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Abstract. As empirically observed in restaurants, call centers, and intensive care units, ser-
vice times needed by customers are often related to the delay they experience in queue.
Two forms of dependence mechanisms in service systems with customer abandonment im-
mediately come to mind: First, the service requirement of a customer may evolve while
waiting in queue, in which case the service time of each customer is endogenously deter-
mined by the system’s dynamics. Second, customers may arrive (exogenously) to the system
with a service and patience time that are stochastically dependent, so that the service-time
distribution of the customers that end up in service is different than that of the entire cus-
tomer population. We refer to the former type of dependence as endogenous and to the latter
as exogenous. Because either dependence mechanism can have significant impacts on a sys-
tem’s performance, it should be identified and taken into consideration for performance-
evaluation and decision-making purposes. However, identifying the source of dependence
from observed data is hard because both the service times and patience times are censored
due to customer abandonment. Further, even if the dependence is known to be exogenous,
there remains the difficult problem of fitting a joint service-patience times distribution to
the censored data. We address these two problems and provide a solution to the corre-
sponding statistical challenges by proving that both problems can be avoided. We show
that, for any exogenous dependence, there exists a corresponding endogenous dependence,
such that the queuing dynamics under either dependence have the same law. We also
prove that there exist endogenous dependencies for which no equivalent exogenous depen-
dence exists. Therefore, the endogenous dependence can be considered as a generalization
of the exogenous dependence. As a result, if dependence is observed in data, one can
always consider the system as having an endogenous dependence, regardless of the true
underlying dependence mechanism. Because estimating the structure of an endogenous
dependence is substantially easier than estimating a joint service-patience distribution from
censored data, our approach facilitates statistical estimations considerably.

Funding: C. A. Wu received financial support from the Hong Kong Research Grant Council [Early Ca-
reer Scheme, Project 26206419]. A. Bassamboo and O. Perry received partial financial support from
the National Science Foundation [Grant CMMI 2006350].
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1. Introduction
Human behavior has significant impacts on the queu-
ing dynamics in service systems. For example, in
many service systems, customers abandon the queue
if they deem their waiting time to be too long. Anoth-
er important phenomenon, which has only started to
receive attention recently, is that service times of cus-
tomers may depend on their delay in queue. This phe-
nomenon is well known to hold in certain healthcare
settings (each minute of delay can be detrimental for
patients having a stroke or a heart attack, thus

substantially affecting treatment times; see Chan et al.
2017) and has also been empirically observed in other
contexts, such as call centers (see Reich et al. 2010)
and restaurants (see De Vries et al. 2018).

We consider two different underlying mechanisms
that lead to such dependence. Under the first mecha-
nism, the service requirement of a customer evolves
while waiting in queue to be served. In this case, cus-
tomers do not have a specific service-time distribu-
tion, but, rather, a conditional service-time distribution,
which depends on the delay they experience before
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their service begins. Thus, the actual service time of a
customer who ends up receiving service (and does
not abandon the queue) is endogenized by the sys-
tem’s dynamics; we therefore refer to this type of de-
pendence as endogenous. In the second mechanism, the
dependence of the service times on the delays is in-
duced by a joint service-patience distribution that can
be thought of as given exogenously to the system (cus-
tomers “arrive exogenously to the system” with their
bivariate service and patience times). Specifically, the
patience and service requirements of each customer
are dependent (e.g., in grocery stores, customers with
many items tend to be more patient in the checkout
line compared with those with few items), so that the
service-time distribution of customers who do not
abandon the queue is different than that of the entire
customer population; we refer to this second type of
dependence as exogenous.

It is significant that either type of dependence can
have substantial impacts on the system’s dynamics,
and therefore on its performance, and on related oper-
ational decisions, such as staffing. This is clear for sys-
tems with endogenous dependence (e.g., consider the
case in which service times of delayed customers are
substantially longer, or shorter, than those of custom-
ers who are not delayed) and was demonstrated via a
fluid model and simulation experiments for systems
with exogenous dependence in Wu et al. (2019). Fur-
ther, Wu et al. (2019) show that the performance of a
system with exogenous dependence depends heavily
on the full joint distribution of the service and pa-
tience times, and not only on the marginal distribu-
tions and their correlation. In turn, optimal staffing
decisions depend on this information as well; see Wu
et al. (2019, section 6).

Unfortunately, data of service and patience times
are necessarily censored due to customer abandon-
ment because observations exist only for the service
times of customers who did not abandon and for the
patience of customers who did abandon. This censor-
ing leads to two statistical challenges: First, it requires
efficient econometric methods to identify whether the
observed dependence is exogenous or endogenous.
Second, even if the dependence can be identified, or is
believed to be exogenous, there remains the difficult
task of fitting a joint service-patience times distribu-
tion to the censored data.

In general, estimating bivariate distributions under
censoring is a hard problem; see, for example, Lopez
and Saint-Pierre (2012). Reich et al. (2010) suggest
nonparametric methods to estimate the exogenous de-
pendence, which do not work well for customers with
short patience times, for which unrealistic negative
service times are predicted. Other estimation proce-
dures were proposed in the literature of survival anal-
ysis. Unfortunately, the dependent random variables

observed in this setting are typically censored simulta-
neously (e.g., times in which a couple withdrew from a
study), so that the proposed estimation methods are
not appropriate for our needs. Dabrowska et al. (1988)
and Akritas and Keilegom (2003) develop nonpara-
metric methods to handle bivariate censoring, but, as
mentioned in Lopez and Saint-Pierre (2012), those
methods have significant drawbacks: They either do
not define a true joint distribution, require a careful
choice of smoothing parameters, or make additional
assumptions on the censoring conditions, so that the
proposed methods are again not useful for our needs.
Parametric procedures for estimating censored joint
distributions have also been considered. Unfortunate-
ly, such methods impose stringent assumptions on the
bivariate distribution one wishes to estimate and may
not perform well when prior knowledge regarding
that distribution is unavailable.

In this paper, we provide a solution to the aforemen-
tioned statistical challenges by proving that both can be
effectively avoided. Specifically, we show that for any
exogenous dependence (with joint service-patience
distribution), there exists a unique endogenous depen-
dence, such that the queuing dynamics under either de-
pendence mechanism are the same (have the same
law), for all arrival rates and staffing levels. We also
prove that the class of systems with endogenous depen-
dencies is larger than that with exogenous dependen-
cies, in the sense that there exist endogenous depen-
dence mechanisms for which no equivalent exogenous
dependence exists. Therefore, from the point of view of
the queuing dynamics (transient and stationary), the en-
dogenous dependence can be considered as a generali-
zation of the exogenous dependence.

Our results demonstrate that, regardless of the true
dependence mechanism, and regardless of whether
data are available for a desired arrival process or
staffing level, both the transient and the stationary be-
havior of the system can be treated as if the depen-
dence is endogenous. That endogenous dependence
can be estimated from available data, even if it was
collected for different arrival processes and staffing
levels than those we are interested in. Hence, the diffi-
cult dependence-identification problem can be
avoided, because a system can always be modeled as
having an endogenous dependence. Furthermore, the
problem of fitting a joint distribution for the service
and patience times is avoided as well and is replaced
by the substantially easier task of estimating the
structure of endogenous dependence (which is either
the true dependence in the system or is equivalent to
the exogenous dependence in the system). Thus, for
distribution-fitting purposes, we advocate that the sys-
tem should be considered as having an endogenous de-
pendence, even if it is somehow known to possess an
exogenous dependence.
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We remark that our model of endogenous depen-
dence is related to the literature on deteriorating jobs,
which studies jobs that deteriorate while waiting,
leading to longer processing times of those jobs; see
Sugawa and Takahashi (1965), Glazebrook (1992),
Browne and Yechiali (1990), and Mosheiov (1991).
Motivated mostly by applications in manufacturing,
the goal is to develop scheduling policies to process a
fixed number of jobs. However, the models consid-
ered in this literature have no randomness in the ar-
rival process and no abandonment of jobs from the
queue, and are therefore not appropriate for service
systems. Other related works on dependencies in
queues include Whitt (1990) and Boxma and Vlasiou
(2007), both deriving the waiting-time distribution in
single-server queues when service and interarrival
times depend linearly on the delay.

2. The Setting
We consider a service system with n ≥ 1 statistically
identical agents that are dedicated to serving statisti-
cally homogeneous customers that arrive to the sys-
tem in accordance with a simple counting stochastic
process (namely, customers arrive one at a time). We
let A(t) denote the number of customers that arrive by
time t. A customer begins service with an agent imme-
diately upon arrival, if an agent is available, and oth-
erwise waits in queue. We assume customers are
served in the order of arrival. Each customer has a fi-
nite patience for waiting; if the waiting time in queue
exceeds that patience time, the customer abandons the
queue. The key feature of the systems we consider is
that the service time of each customer depends on the
delay that customer experiences. This dependence is
either endogenous, in the sense that the service-time
distribution is a function of the delay in queue, or is
exogenous and induced by a self-selection mechanism
of customers under a common joint service-patience
times distribution.

2.1. The Two Dependence Mechanisms
We consider two types of systems, one with exoge-
nous dependence and the other with endogenous de-
pendence, and refer to each type (with a slight abuse
of language) simply as “the system with exogenous
(endogenous) dependence.” Throughout the paper,
we use superscripts “ex” and “en” to distinguish be-
tween entities (random variables, stochastic processes,
etc.) corresponding to systems with exogenous and
endogenous dependencies, respectively.

In the system with exogenous dependence, custom-
er i arrives with a service time Sexi and a patience time
Tex
i , which are dependent random variables. The bi-

variate random variables {(Sexi ,Tex
i ) : i ≥ 1} are jointly

continuous with a joint probability density function

(pdf) f ex, independent across customers and indepen-
dent of the system’s state; see Bassamboo and Rand-
hawa (2015) and Wu et al. (2019). We let f exT denote the
marginal pdf of Tex

i .
In the system with endogenous dependence, we use

Ten
i to denote the patience time of customer i, and we

assume that {Ten
i : i ≥ 1} are independent and identi-

cally distributed (i.i.d.) continuous random variables
that are independent from all other random variables
in the queuing system. We denote the cumulative dis-
tribution function (cdf) and pdf of Ten

i by FenT and f enT ,
respectively, with F̄en

T ¢1− FenT denoting the corre-
sponding complementary cdf (ccdf). The service-time
distribution of each customer in this system depends
on the delay that customer experiences in queue. Spe-
cifically, let Zen

i denote the offered wait of customer i,
representing the virtual waiting time of that customer,
namely, the time he would wait if his patience was
infinite.

The service times of arriving customers are de-
scribed by a stochastic process, {Seni (Zen

i ) : i ≥ 1}, where
Seni (Zen

i ) denotes a random variable representing cus-
tomer i’s “virtual” service time, given that his offered
wait is Zen

i . (We write virtual service time because the
customer may abandon and not receive service.) This
family of service-time distributions captures the evo-
lution of customers’ service times as they wait in
queue. We assume that {Seni (z) : i ≥ 1} are independent
across customers, are identically distributed for each
value z of Zen

i , and are also independent of all other
random variables comprising the system. Let Ψen

denote the virtual service-time distribution of a cus-
tomer, conditioned on that customer’s offered wait,
namely, Ψen(x, z)¢P(Seni ≤ x | Zen

i � z). Define the con-
ditional ccdf Ψ̄en(x,z)¢1−Ψen(x, z).
Assumption 1. Ψen(x, z) is differentiable in x and in z.

Under Assumption 1, the pdf of the virtual service
time exists and satisfies ψen(x, z) � ∂Ψen(x, z)

∂x .

2.2. Systems’ Dynamics
Because we do not assume that the arrival process
A(t) is Poisson and that the service and the patience
times are exponentially distributed (or that the service
time of a customer is independent of his patience in
the system with exogenous dependence), the number-
in-system process is non-Markov. (See evidence of
nonexponential service and patience times in Brown
et al. 2005 and Mandelbaum and Zeltyn 2004.) A Mar-
kovian representation for the queuing dynamics is
achieved by keeping track, at each time t ≥ 0, of the re-
maining time until the next arrival, as well as the re-
maining service time of each customer in service and
the elapsed waiting time of each customer that is wait-
ing in queue.
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Specifically, for M ∈ {ex, en} and t ≥ 0, let YM(t) ∈
{0, 1, : : : ,n} and QM(t) ∈ N+¢{0, 1, : : : } denote the
number of customers in service and in queue,
respectively. Let BM(t) denote the forward recurrence
time for the arrival process A(t), namely, with κi being
the time of the ith arrival after time 0, BM(t) �
κA(t)+1 − t. Let UM(t) ∈ R

n
+ denote the remaining serv-

ices times of customers in service, sorted in increasing
order. Specifically, if YM(t) < n, so there are n−YM(t)
idle servers, then for j ∈ {1, : : : ,n−YM(t)}, let UM

j (t),
the jth entry of UM(t), be zero; for j ∈ {n−
YM(t) + 1, : : : ,n}, let UM

j (t) be the (YM(t) + j− n)th
(weakly) smallest remaining service time of customers
in service. Similarly, let VM(t) ∈ R

∞
+ denote the

elapsed waiting times of customers in queue, sorted in
decreasing order (this leads to ranking waiting custom-
ers in ascending order of their arrivals). If QM(t) ≥ 1,
then for j ∈ {1, : : : ,QM(t)}, let VM

j (t) be the jth (weakly)
largest elapsed waiting time of customers in queue;
for j >QM(t), let VM

j (t) � 0. Otherwise, if QM(t) � 0,
then let all entries of VM(t) be zero. In general, the en-
tries of UM(t) and VM(t) can be ordered in an arbi-
trary manner; we choose the orderings above because
they are easy to interpret. Then,

XM(t) �
(
YM(t),QM(t),UM(t),VM(t),BM(t)

)
, t ≥ 0,

is a Markov process, describing the queuing dynamics
of systemM.

Remark 1. An alternative Markov representation for a
system without dependence can be achieved by track-
ing the remaining time to abandon of each customer
waiting in queue. It is significant that this alternative
representation cannot be employed in our setting, be-
cause the information regarding the actual waiting
time of each customer is required in order to deter-
mine the service-time distribution of that customer.

3. Main Results
To formally state our main result, we define an equiva-
lence relation between exogenous and endogenous de-
pendencies; see Definition 1. We first note that, in ad-
dition to the arrival process A and the number of
agents n, the queuing dynamics in a system with exog-
enous dependence are completely determined by the
joint service-patience distribution f ex, whereas the dy-
namics in a system with endogenous dependence are
completely determined by the patience distribution f enT
together with the virtual service-time distribution ψen.

Let Lex(A,n; f ex) denote the probability law of Xex in
the system with exogenous dependence characterized
by (A,n, f ex); similarly, let Len(A,n; f enT ,ψen) denote the
probability law of Xen in the system with endogenous
dependence described by (A,n; f enT ,ψen). Here, by “the
law of XM,” we mean, as usual, the joint distribution

of the family of random variables XM(t), indexed
by t ≥ 0, which is determined by the family of
finite-dimensional distributions of XM; see, for exam-
ple, Billingsley (2013) and Whitt (2002). Let �d denote
equality in distribution.

Remark 1. We say that an exogenous dependence
with a joint pdf f ex is equivalent to an endogenous de-
pendence with ( f enT ,ψen), if Lex(A,n; f ex) � Len(A,n;
f enT ,ψen), for any arrival process A and capacity n,
whenever Xex(0)�dXen(0).

We now state the main result of the paper.

Theorem 1. For any exogenous dependence characterized by
a joint pdf f ex, there is an equivalent endogenous dependence
( f enT ,ψen). Further, the two dependencies are related via

f enT (z) � f exT (z) and ψen(x, z) �
∫ ∞
z

f ex(x,y)dy∫ ∞
z

f exT (y)dy
,

for all x, z ≥ 0:

(1)

To prove Theorem 1, we define a discrete-time of-
fered-wait process, denoted by {ZM

i , i ≥ 1}, such that
ZM
i is customer i’s offered wait. We characterize the

offered-wait process {ZM
i , i ≥ 1} by describing an aux-

iliary n-dimensional stochastic process {ZM
i , i ≥ 1},

which tracks the residual service times at other servers
not serving customer i. Imagine that n – 1 virtual cus-
tomers with infinite patience arrive simultaneously
with customer i, whom we index by {2, 3, : : : ,n}. De-
noting the kth entry of ZM

i by ZM
i (k), let ZM

i (1) be the
offered wait of the actual customer i—that is,
ZM
i (1) � ZM

i . For 2 ≤ k ≤ n, we stipulate that virtual
customer k should be served by a distinct server other
than those who have already served the real customer
i and virtual customers 2, : : : ,k− 1, and we let ZM

i (k)
be his waiting time. In other words, ZM

i (k) −ZM
i (k− 1)

represents the time between the (k− 1)st and kth dis-
tinct servers becoming available.

The representation of the offered-wait process fol-
lows Moyal (2019), employing the sorting (reordering)
operator R : R+

n �→ R
+
n , defined as follows. Let x(j)

denote the jth (weakly) smallest component of the
vector x ∈ R

n: x(j−1) ≤ x(j) ≤ x(i+1), 2 ≤ j ≤ n− 1. Then,
R(x) � (x(1), : : : ,x(n))—that is, R sorts each vector x in
increasing order, with R1(x) being the smallest and
Rn(x) being the largest components of x.

To achieve a unified representation for the process
{ZM

i , i ≥ 0}, we employ the notation SMi (ZM
i (1)) for

M � en, as well as forM � ex. This notation is clear for
the endogenous case (M � en), because the service
time of each customer is a function of the delay. It is
redundant for the exogenous case (M � ex), but can be
justified by treating Sexi as a constant function of
Zex
i (1), namely, Sexi (z) ≡ Sexi for all i ≥ 1 and z ≥ 0. With

Wu, Bassamboo, and Perry: A Relationship Between Two Models of Dependence
4 Operations Research, Articles in Advance, pp. 1–10, © 2021 INFORMS



this notation, the offered-wait process evolves accord-
ing to the following recursive formula:

ZM
i+1 �R([ZM

i + I{ZM
i (1)≤TM

i }SMi (ZM
i (1))e1 −αM

i+11]+),
M ∈ {en, ex},

(2)

where e1¢(1, 0, : : : , 0), 1¢(1, 1, : : : , 1), and αM
i+1 is the

time between the arrivals of customers i and i + 1,
namely, αM

i+1 � κM
i+1 − κM

i . The initial value ZM
1 is fully

characterized by XM(0).
We are now prepared to prove Theorem 1. The proof

follows two steps: a “construction step,” in which we
construct two systems jointly via a coupling argument,
such that one of the systems has the endogenous depen-
dence, and the coupled system has the same dynamics
as the endogenous one; and a “verification step,” in
which we show that the coupled system constructed in
the first step has the law of a system with exogenous de-
pendence. Because the verification step requires a te-
dious computation, we omit it in the proof for brevity.

Proof of Theorem 1. As described above, we first
couple two systems on the same probability space,
among which one has an endogenous dependence
specified in Section 2.1, such that both systems have
the same sample paths with probability one (w.p.1.).
We then argue that the second system (that is coupled
with the endogenous one) has the desired exogenous de-
pendence, therefore proving the claim of the theorem.
The proof focuses on establishing an equivalence be-
tween two systems initialized empty and can be easily
extended to prove systems with arbitrary initial condi-
tions. We use a ~ (tilde) to denote the stochastic process-
es and random variables on the new probability space.

For each sample path describing the dynamics of a
system with an endogenous dependence, we construct
a coupled system in the following steps.

We first generate (t̃eni , s̃eni (·)) and α̃en
i for each new ar-

rival in the system with endogenous dependence. The
offered-wait process for these new arrivals is fully
characterized by the Recursion (2). We next construct
a coupled system and use superscript “c” to denote
the random variables in it.

i. Set α̃c
i � α̃en

i , so the ith customer arrives at the same
time in the system with endogenous dependence and
the coupled system. Hence, both systems have the
same realized arrival process.

ii. If t̃eni ≤ z̃eni , then the ith customer abandons in the
system with endogenous dependence. Set T̃c

i � t̃eni and
generate S̃c

i from the density

f ex(·, t̃eni )
f exT (t̃eni )

,

namely, from the conditional distribution of Sexi condi-
tioned on Tex

i � t̃eni .

iii. If t̃eni > z̃eni , then the ith customer is served in the
system with endogenous dependence and requires a
service time s̃eni (z̃eni ). Set S̃c

i � s̃eni (z̃eni ) and generate T̃c
i

from the density

f ex(s̃eni (z̃eni ), ·)I{·>z̃eni }∫ ∞
z̃eni

f ex(s̃eni (z̃eni ),y)dy
,

namely, from the conditional distribution of Tex
i condi-

tioned on Sexi � s̃eni (z̃eni ) and Tex
i > z̃eni .

Steps (i)–(iii) above guarantee the coupled system
has exactly the same dynamics as the system with en-
dogenous dependence we start with. Specifically, we
can first argue that z̃eni � z̃ci for all i. This is because
step (iii) guarantees that each customer, if he enters
service (when z̃Mi < t̃Mi , for M ∈ {en, c}), requires the
same service time in both the coupled system and the
system with endogenous dependence, namely,
s̃eni (z̃eni ) � s̃ci . Then, using (2), it follows by induction
that the auxiliary processes {Z̃M

i : i ≥ 1} are the
same in both systems, which implies z̃eni � z̃ci
because z̃Mi � z̃Mi (1). This further implies X̃en � X̃

c

path by path. For example, consider the queue
process {Q̃M(t), t ≥ 0}. We have Q̃M(t) �∑

κ̃M
i ≤t

I{t−κ̃i
M<min(t̃Mi ,z̃Mi )}, where κ̃M

i �∑i
j�1 α̃M

j is the arrival
time of the ith customer. Because κ̃en

i � κ̃c
i by step (i), it

follows that Q̃
en(t) � Q̃

c(t) for all t. Similarly, we can
verify the other component processes in X̃

en
and X̃

c

are equal w.p.1.
Using basic computations, we can show that the

coupled system has the desired exogenous depen-
dence, consistent with the one described in Section
2.1. Specifically, it can be shown that {(S̃c

i , T̃
c
i ) : i ≥ 1}

generated in steps (i)–(iii) are i.i.d. and have the same
joint distribution f ex. Because the law of the process
Xex is uniquely determined by f ex, given A and n, it
follows that the coupled system has the same
queuing dynamics as the system with exogenous de-
pendence, which further implies Lex(A,n; f ex) �
Len(A,n; f enT ,ψen). w

The proof of Theorem 1 shows that the two depen-
dence mechanisms impact the queuing dynamics only
via the conditional service-time distribution condi-
tioned on the waiting times, namely, via P(SMi ≤ s |
TM
i > ZM

i ,ZM
i � z). Now, if f enT and ψen in an endoge-

nous dependence satisfy (1), then

Ψ̄(x, z)enF̄en
T (z) �

∫ ∞
v�z

∫ ∞
u�x

f ex(u,v)dudv,

which is decreasing in x and in z. As we show in The-
orem 2, this latter monotonicity property also implies
that the endogenous dependence has an equivalent
exogenous dependence. To prove this result, we need
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the following lemma, whose proof appears in the
appendix.

Lemma 1. For k � 1, 2 let f kT denote a pdf of the patience-
time distribution and ψk denote the conditional pdf of the
virtual waiting time. Then, Len(A,n; f 1T ,ψ1) � Len(A,n;
f 2T ,ψ

2) for any arrival process A, capacity n, and initial con-
dition Xen(0) if and only if ( f 1T ,ψ1) � ( f 2T ,ψ2).

Lemma 1 shows that if two systems with endogenous
dependencies have the same queuing dynamics under
any arbitrary arrival process, capacity, and initial condi-
tions, then the two dependencies must be characterized
by the same patience-time and conditional service-time
distributions. Because each exogenous dependence has
an equivalent endogenous dependence, Lemma 1 im-
plies that the latter equivalent endogenous dependence
is unique. Moreover, Lemma 1 allows us to characterize
the condition for an endogenous dependence to have
an equivalent exogenous dependence.

Theorem 2. An endogenous dependence with ( f enT ,ψen) is
equivalent to some exogenous dependence f ex if and only if
Ψ̄

en(x,z)F̄en
T (z) is decreasing in x and in z.

Theorem 1 implies that the family of systems with
exogenous dependence forms a subclass of the family
of systems with endogenous dependence, in the sense
that the queue process under any exogenous depen-
dence is equal in distribution to the queue process un-
der some (specific) endogenous dependence. Theorem
2 further implies this subclass is proper, because there
exist endogenous dependencies for which the condi-
tion in Theorem 2 fails to hold, so that no equivalent
exogenous dependence exists.

Example 1. Consider the following endogenous-
dependence model: The patience times are exponen-
tially distributed with mean 1=γ, and the service times
are, conditional on the offered wait being z, exponen-
tially distributed with mean 1=μ(z). Then, Ψ̄en(x,z)
F̄
en
T (z) � exp(−(γz+μ(z)x)) which is decreasing in x,

but is not necessarily decreasing in z when μ(z) is
strictly decreasing in z. For example, consider
μ(z) �max{ā − bz, a}, where ā > a > 0. Then, for small z
such that ā − bz > a, it holds that

Ψ̄
en(x,z)F̄en

T (z) � exp(−(γz+ (ā − bz)x))
� exp(−(āx+ (γ− bx)z)):

For x > γ=b, Ψ̄en(x,z)F̄en
T (z) is increasing in z for

z < (ā − a)=b, thus violating the condition in Theorem 2.
It is significant that estimating an endogenous

dependence is, in general, simpler than estimating an
exogenous dependence. Therefore, for distribution-
fitting purposes, we advocate that the system should
be considered as having an endogenous dependence,
even if it is known to possess an exogenous dependence.

To elaborate on this latter point, note that under the
endogenous dependence, the problem of fitting a
two-sided censored distribution is replaced by the
problem of estimating the univariate patience distri-
bution, for which (unlike the multivariate case) an
efficient estimator exists, as well as estimating the un-
censored service-time distribution corresponding to
each delay time.

4. A Simple Estimation Procedure for
Systems with Dependence

We now propose a simple procedure to estimate
endogenous dependencies. First, we use the Kaplan-
Meier (K-M) estimator (Kaplan and Meier 1958) to esti-
mate the patience-time distribution (e.g., Zohar et al.
2002). Let N denote the number of customers in the
sample and J denote the number of customers that
abandoned the queue, so that N – J is the number of
customers that received service. We rank the waiting
times of the abandoned customers in increasing order,
0¢t0 < t1 < t2 < : : : < tJ < tJ+1¢∞. The K-M estimator
for FenT is then

F̂
en
T (x) �

∏
tj ≤x

1− # customers who abandon at tj
# customers who have not abandoned by tj−

( )
:

(3)

Second, the conditional service-time distribution can
be estimated from the service times observed from
served customers. For i � 1, : : : ,N, let ai denote whether
customer i was served: ai � 1 if the customer was
served and ai � 0 otherwise. If ai � 1, let si and wi be
the service and waiting times observed from that cus-
tomer. We split the observations of served customers
into M separate bins {B1,B2, : : : ,BM} based on their
waiting times. Each bin is set to be a disjoint interval
such that there are sufficiently many observations in
each bin to allow for an estimator that approximates
Ψen well. For each z ∈ R+, find the bin Bm, 1 ≤m ≤M
containing z. We use the following empirical service-
time distribution to approximateΨen(x,z),

Ψ̂
en(x,z) �

∑N
i�1I{ai � 1,wi ∈Bm, si ≤ x}∑N

i�1I{ai � 1,wi ∈Bm}
: (4)

As the length of each bin is set to be sufficiently small,
we expect the approximation in (4) to be close enough
to the trueΨen. We leave the rigorous statistical analy-
sis for future research.

4.1. Implementation of the Proposed
Estimation Procedure

We demonstrate via simulations that the proposed es-
timation procedure is effective, even when the actual
dependence in the system is exogenous. We start by
simulating two systems initialized empty, each having
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n � 10 agents, a Poisson arrival process with rate 12,
and marginal service and patience times that are ex-
ponentially distributed with means one and two,
respectively. Both systems have an exogenous depen-
dence: one with a positive dependence and one with a
negative dependence between the service and pa-
tience times. We use Gaussian copulas to generate the
joint service-patience distributions (see Wu et al. 2019,
appendix A for background). We denote by r the cor-
relation of the generated service and patience times.
We take r � −0:3 and r � 0.5 to represent a negative
and a positive dependence, respectively. For each sys-
tem, we simulate one sample path over 50,000 time
units and collect the service and waiting times of cus-
tomers served by an agent, as well as the patience
times of customers who abandoned the queue. We
employ (3) and (4) to estimate the patience-time distri-
bution and the conditional service-time distribution
for equivalent endogenous dependencies.

We compare our estimations to an estimation proce-
dure that ignores the dependence, namely, a proce-
dure that treats the service times as being independent
of all other random variables in the system, as well as
the system’s state. In the latter estimation procedure,
we use the K-M estimator (3) to estimate the patience-
time distribution. Because the service times are as-
sumed to be i.i.d. and independent of the waiting
times, we estimate the (unconditional) service-time
distribution using the empirical distribution for the
service times observed from served customers.

To demonstrate the performance of the estimations
for the equivalent endogenous dependencies as op-
posed to the estimations that ignore the dependencies,
we vary the number of agents while keeping the arriv-
al process fixed. Specifically, we first simulate systems
with exogenous dependencies to produce the true
steady-state metrics. We then fix the estimations for
the equivalent endogenous dependencies, as well as
the estimations that ignore the dependencies, both ob-
tained from the observations produced by a system

with an exogenous dependence and 10 agents. We
then simulate systems with the two different estima-
tions, varying the number of agents from 8 to 12.

We compare in Table 1 the steady-state queue length
and throughput (the average number of service com-
pletions per unit time) of the systems with true exoge-
nous dependencies (“Actual” column), the systems
with estimations for the equivalent endogenous depen-
dencies (“Endogenous” column), and the systems with
estimations that ignore the dependencies (“Independent”
column).

We find that treating the stochastic processes as be-
ing independent when they are, in fact, dependent can
lead to substantial errors in estimations and predic-
tions. In contrast, the estimation procedure for equiva-
lent endogenous dependence performs relatively well,
despite its simplicity. More efficient econometric meth-
ods can be developed to refine the estimations for en-
dogenous dependencies, and we leave these methods
for future research.

4.2. Optimal Staffing
In this section, we use simulation examples to demon-
strate how to utilize our estimates in Section 4.1 to
make predictions for the optimal staffing level if the
arrival rate is about to change, with no data available
(e.g., service time or waiting time) for that new rate.
Specifically, we consider two systems, each having an
exogenous dependence (marginal service and pa-
tience times are exponentially distributed with means
one and two, respectively, and their joint distributions
are generated via Gaussian copulas with correlation r
� 0.5 and r � −0:3, respectively), 10 agents and a Pois-
son arrival process with rate 12, and use our proposed
procedure to estimate the equivalent endogenous de-
pendence. We then consider a new system with the
same exogenous dependence as before, but increase
the arrival rate to 24. The goal is to identify the opti-
mal number of agents for the new system to maximize
profit. We follow Wu et al. (2019) and define the profit

Table 1. Performance Comparison of Estimation Procedures

Agents

Queue length Throughput

Actual Endogenous Independent Actual Endogenous Independent

Positive dependence, r � 0.5

8 12.37 −3.0% −12.9% 5.81 +2.6% +13.8%
10 7.74 +0.6% −1.4% 8.13 −0.7% +0.9%
12 3.64 +4.1% +31.0% 10.19 −0.8% −5.3%

Negative dependence, r � −0:3
8 5.75 +0.0% +20.2% 9.12 +0.3% −6.0%
10 3.37 −0.2% +5.5% 10.31 +0.2% −0.7%
12 1.76 −0.4% −13.3% 11.12 +0.2% +1.2%
Notes. The steady-state performance metrics are computed by taking averages of 500 independent runs, each lasting 3,000 time units with the
first 1,000 time units serving as a warm-up period. The 95% confidence interval half-width is less than 0.3% for all reported metrics.
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as the difference between the revenue generated from
customers served and cost of allocating servers. Let p
denote the revenue of serving a customer and c denote
the unit cost of capacity.

In Table 2, we compare the optimal capacity and
profit (“Optimal” column) to the corresponding opti-
mal values obtained from our estimations of the equiva-
lent endogenous dependence (“Endogenous” column)
and from estimations that ignore the dependence
(“Independent” column). We find that our estimations
of the equivalent endogenous dependence lead to accu-
rate prescriptions of the optimal staffing level, whereas
the estimations that treat the dependence to be nonexis-
tent may lead to substantial loss in profit, especially
when there is a negative dependence and the reward of
serving customers is low, p < c (recall the unconditional
service rate of customers not delayed in queue is μ � 1).
When p < c, service is unprofitable in the system with
positive dependence because the throughput in such a
system is lower than the capacity. However, service can
be profitable in a system with negative dependence, be-
cause the throughput in such a system is higher than
the capacity; see Wu et al. (2019). In this latter case, our
estimations of the equivalent endogenous dependence
significantly outperform those that ignore the depen-
dence in prescribing the staffing level.

In ending, we remark that a similar staffing problem
is considered in Wu et al. (2019). In the setting of Wu
et al. (2019), management is assumed to know that (i)
the dependence is exogenous, and (ii) the joint service-
patience distribution. However, as discussed above, it is
hard in practice to determine the form of the depen-
dence mechanism and to estimate the joint distribution,
even if one believes that the dependence is exogenous.
It is also significant that Wu et al. (2019) solves the staff-
ing problem by utilizing a fluid model that is useful as
an approximation for large systems. In contrast, our esti-
mates of the endogenous dependence (whether it is the
true dependence mechanism or is equivalent to an actu-
al exogenous dependence) do not require any prior
knowledge regarding the exact form of the underlying

dependence. Moreover, unlike Wu et al. (2019), our re-
sults hold for stochastic systems themselves, and not
for their asymptotic approximations.
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Appendix A. A Model with Generalized
Dependence Mechanism

In this section, we consider a generalized dependence
mechanism, in which each customer’s service time depends
on his patience and his delay in queue. This generalized
model naturally subsumes exogenous and endogenous de-
pendencies as special cases. As we show below, the queu-
ing dynamics under such generalized dependence are
again equivalent to the queuing dynamics under certain
endogenous dependence, so that, once again, endogenous
dependence is all one needs to consider in practice.

The Model
Letting TG

i denote the patience time of customer i, we
assume that {TG

i : i ≥ 1} are i.i.d. continuous random varia-
bles that are independent from the system’s state. We de-
note the cdf and pdf of TG

i by FGT and f GT , respectively,
with F̄

G
T¢1− FGT denoting the corresponding ccdf. The

service-time distribution of each customer depends on the
customer’s patience, as well as on his delay in queue. Spe-
cifically, letting ZG

i denote the offered wait of customer i,
we assume that the service times of arriving customers
are described by a stochastic process, {SGi (TG

i ,Z
G
i )}, where

SGi (TG
i ,Z

G
i ) denotes a random variable representing the vir-

tual service time of customer i, given that his patience
time is TG

i and offered wait is ZG
i . We assume that

{SGi (t, z) : i ≥ 1} are independent across customers, are
identically distributed for each realized value (t, z) of
(TG

i ,Z
G
i ), and are also independent of all other random

variables comprising the system. Let ΞG denote the virtual
service-time distribution of a customer, namely,
ΞG(x, t, z)¢P(SGi ≤ x | TG

i � t,ZG
i � z).

We assume that the pdf of the virtual service time exists
and satisfies ξG(x, t,z) � ∂ΞG(x, t,z)

∂x .

Table 2. Staffing Using Estimations of Equivalent Endogenous Dependence Compared with Optimal Staffing and Staffing
Using Estimations That Assume Independent Service and Patience Times

p

Optimal Endogenous Independent

Capacity Profit Capacity Profit Capacity Profit

Positive dependence, r � 0.5

1.5 25 8.16 26 −1.3% 23 −9.8%
3 27 42.35 28 −0.3% 30 −2.6%

Negative dependence, r � −0:3
0.95 9 2.74 10 −2.0% 15 −30.5%
1.5 18 11.96 18 0.0% 21 −3.8%
3 24 44.51 24 0.0% 24 0.0%

Notes. c � 1 in all examples.When p � 0.95, service is unprofitable under positive dependence r � 0.5.
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Clearly, the exogenous and endogenous dependence
mechanisms are special cases of the generalized-dependence
mechanism just described: The dependence is exogenous if
ξ(x, t,z) does not depend on z and is endogenous if ξ(x, t, z)
does not depend on t. For a system with generalized depen-
dence, we can follow Section 2.2 to formulate the queuing
dynamics using a Markov process and define its probability
law. We can define an equivalence relation between general-
ized dependence and endogenous dependence analogously
to Definition 1 by replacing the law under exogenous de-
pendence by the law under generalized dependence. The
following theorem shows that for each generalized depen-
dence, there exists an equivalent endogenous dependence,
and it must be unique, as implied by Lemma 1.

Theorem A.1. For any generalized dependence mechanism
characterized by ( f GT ,ξG), there is an equivalent endogenous de-
pendence ( f enT ,ψen). The two dependencies are related via

f enT (z) � f GT (z) and ψen(x,z) �
∫ ∞
z
ξG(x, t, z) f GT (t)dt

F̄
G
T (z)

for all x, z ≥ 0:
The fact that the endogenous dependence is subsumed by
the generalized dependence implies that the family of sys-
tems with endogenous dependence forms a subclass of
the family of systems with generalized dependence.
Theorem A.1 shows that these two classes are in fact iden-
tical. Therefore, the generalized dependence is not more
general than the endogenous dependence, in the sense that
both mechanisms give rise to the same family of distribu-
tions of queuing dynamics. As a result, our main insight
remains valid: Statistical analyses of systems can be car-
ried out by assuming that the service requirement of each
customer depends on his delay in queue, even if the ser-
vice time depends (solely, or additionally) on his patience.

Appendix B. Proofs

Proof of Lemma 1. Sufficiency follows trivially from the
fact that the law of the process Xen is uniquely determined
by ( fT,ψ), given A and n.

To prove the necessity, we show that, if
Len(A,n; f 1T ,ψ1) � Len(A,n; f 2T ,ψ2) for an arbitrary arrival
process A, capacity n, and initial conditions X(0), then
( f 1T ,ψ1) � ( f 2T ,ψ2). To this end, we focus on the second ar-
riving customer (i � 2) in the single-server system (n � 1),
where we construct proper arrival process A and initial
conditions X(0) to demonstrate that having Z1

2�d Z2
2 is suf-

ficient to lead to ( f 1T ,ψ1) � ( f 2T ,ψ2).
The offered wait of customer 2 is described via a recur-

sive formula (Baccelli et al. 1984, equation (2.1)), Zj
2 � [Zj

1

+ I{Tj
1>x}S

j
1(Zj

1) − α
j
2]+, j � 1, 2: For any z > 0, let Z1

1 � Z2
1 � z

w.p.1, (e.g., by letting U1(0) �U2(0) � 2z, Q1(0) �Q2(0) � 0
and α1

1 � α2
1 � z w.p.1) and α1

2 � α2
2 � z=2 w.p.1. It follows

that Zj
2 � [z=2+ I{Tj

1>Z
j
1}S

j
1(z)]+ w.p.1. Hence, P(Zj

2 ≤ z=2) �
P([z=2+ I{Tj

1>z}S
j
1(z)]+ ≤ z=2) � P(z=2+ I{Tj

1>z}S
j
1(z) ≤ z=2) � P(Tj

1

≤ z): Because the queuing dynamics in the two systems
have the same law, it must hold that P(Z1

2 ≤ z=2) � P(Z2
2 ≤

z=2) for all z, implying P(T1
2 ≤ z) � P(T2

2 ≤ z) for all z. Be-
cause z is arbitrary, it must hold that f 1T � f 2T .
For any z,x > 0, let Z1

1 � Z2
1 � z and α1

2 � α2
2 � z=2 w.p.1.

It follows that

P Zj
2 >

z
2
+ x

( )
� P

(
z
2
+ I{Tj

1>z}S
i
1(z)

[ ]+
>
z
2
+ x

)
,

� P
(
z
2
+ I{Tj

1>z}S
j
1(z) >

z
2
+ x

)
� P(I{Tj

1>z}S
i
1(z) > x)

� P (Sj1(z) > x)P(Tj
1 > z),

where the last equality follows because Tj
1 and Sj1(·) are

independent. Because we have established earlier that
P(T1

1 > z) � P(T2
1 > z) for all z > 0, it follows that P(S11(z) >

x) � P(S21(z) > x). Because z and x are arbitrary, we thus
have ψ1 � ψ2. w

Proof of Theorem 2. Sufficiency: Suppose Ψ̄en(x, z)F̄en
T (z)

is decreasing in both z and x. We show by construction
that there exists an equivalent exogenous dependence.
Notice that limz→∞limx→∞Ψ̄en(x, z)F̄en

T (z) � 0 and limz→0

limx→0Ψ̄
en(x, z)F̄en

T (z) � 1: The differentiability of Ψen in
Assumption 1 implies that Ψ̄en(x, z)F̄en

T (z) is jointly
continuous in x and in z. Hence, Ψ̄en(x, z)F̄en

T (z) can be rep-
resented as a continuous two-dimensional ccdf. The differ-
entiability of Ψen(x, z) in z also implies Ψ̄en(x, z)F̄en

T (z) is
differentiable in z. Hence, there exists a bivariate joint

density f̂ ex : R2
+ �→ R+ such that Ψ̄en(x, z)F̄en

T (z) �
∫ ∞
y�z∫ ∞

u�x
f̂ ex(u,y)dudy: One can verify that f̂ ex defined above, to-

gether with ( f enT ,ψen), satisfies the conditions in (1). Theo-
rem 1 then implies the endogenous dependence ( f enT ,ψen)
is equivalent to an exogenous dependence with joint
service-patience distribution f̂ ex.
Necessity: We prove by contradiction. Suppose there ex-

ists an endogenous dependence ( f enT ,ψen) such that
Ψ̄

en(x, z)F̄en
T (z) is not decreasing in x and in z. Further, it is

equivalent to some exogenous dependence f̂ ex. Theorem 1
and Lemma 1 imply the latter exogenous dependence f̂ ex

is equivalent to a unique endogenous dependence
( f̂ enT , ψ̂en) such that ¯̂Ψ

en(x, z) ¯̂Fen
T (z) is decreasing in x and in

z. This leads to a contradiction to the assumed equiva-
lence between ( f enT ,ψen) and f̂ ex. w

Proof of Theorem A.1. The arguments to prove this re-
sult are similar to those of Theorem 1. We follow two
steps: A construction step, in which we construct two sys-
tems jointly via a coupling argument; and a verification
step, in which we show that the coupled system
constructed in the first step has the law of a system with
generalized dependence. Because the verification step re-
quires a tedious computation, we omit it for brevity.
Following the notation in the proof of Theorem 1, we

use a ~ (tilde) to denote the stochastic processes and ran-
dom variables on the new probability space, where we
couple two systems. For each sample path describing the
dynamics of a system with an endogenous dependence,
we construct a coupled system in the following steps. We
first generate (t̃eni , s̃eni (·)) and α̃en

i for each new arrival in
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the system with endogenous dependence. The offered-
wait process for these new arrivals is fully characterized
by the Recursion (2). We next construct a coupled system
and use superscript “c” to denote the random variables
in it.

i. Set α̃c
i � α̃en

i , so that the ith customer arrives at the same
time in the system with endogenous dependence and the
coupled system. Hence, both systems have the same realized
arrival process.

ii. If t̃eni ≤ z̃eni , then the ith customer abandons in the system
with endogenous dependence. Set T̃

c
i � t̃eni and generate S̃

c
i

from the density ξG(·, t̃eni , z̃eni ), namely, from the conditional
distribution of SGi (TG

i ,Z
G
i ) conditioned on TG

i � t̃eni and
ZG
i � z̃eni .
iii. If t̃eni > z̃eni , then the ith customer is served in the system

with endogenous dependence and requires a service time
s̃eni (z̃eni ). Set S̃c

i � s̃eni (z̃eni ) and generate T̃c
i from the density

ξG(s̃eni (z̃eni ), · , z̃eni ) f enT (·)I{·>z̃ eni }∫ ∞
z̃ eni

ξG(s̃eni (z̃eni ), t, z̃eni ) f enT (t)dt
,

namely, from the conditional distribution of TG
i condi-

tioned on SGi � s̃eni (z̃eni ) and TG
i > z̃eni .

The coupled system has the same queuing dynamics as the
system with endogenous dependence. Using basic computa-
tions, we can further show that the coupled system has the
desired generalized dependence described by ( f GT ,ξG). w
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