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Abstract. Problem definition: We study scheduling multi-class impatient customers in par-
allel server queueing systems. At the time of arrival, customers are identified as being one 
of many classes, and the class represents the service and patience time distributions as well 
as cost characteristics. From the system’s perspective, customers of the same class at time of 
arrival get differentiated on their residual patience time as they wait in queue. We leverage 
this property and propose two novel and easy-to-implement multi-class scheduling poli-
cies. Academic/practical relevance: Scheduling multi-class impatient customers is an impor-
tant and challenging topic, especially when customers’ patience times are nonexponential. 
In these contexts, even for customers of the same class, processing them under the first- 
come, first-served (FCFS) policy is suboptimal. This is because, at time of arrival, the system 
only knows the overall patience distribution from which a customer’s patience value is 
drawn, and as time elapses, the estimate of the customer’s residual patience time can be fur-
ther updated. For nonexponential patience distributions, such an update indeed reveals 
additional information, and using this information to implement within-class prioritization 
can lead to additional benefits relative to the FCFS policy. Methodology: We use fluid 
approximations to analyze the multi-class scheduling problem with ideas borrowed from 
convex optimization. These approximations are known to perform well for large systems, 
and we use simulations to validate our proposed policies for small systems. Results: We 
propose a multi-class time-in-queue policy that prioritizes both across customer classes and 
within each class using a simple rule and further show that most of the gains of such a policy 
can be achieved by deviating from within-class FCFS for at most one customer class. In 
addition, for systems with exponential patience times, our policy reduces to a simple 
priority-based policy, which we prove is asymptotically optimal for Markovian systems 
with an optimality gap that does not grow with system scale. Managerial implications: Our 
work provides managers ways of improving quality of service to manage parallel server 
queueing systems. We propose easy-to-implement policies that perform well relative to rea-
sonable benchmarks. Our work also adds to the academic literature on multi-class queueing 
systems by demonstrating the joint benefits of cross- and within-class prioritization.

Funding: A. Bassamboo received financial support from the National Science Foundation [Grant CMMI 
2006350]. C. (A.) Wu received financial support from the Hong Kong General Research Fund [Early 
Career Scheme, Project 26206419]. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1190. 
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1. Introduction
In this paper, we study scheduling multi-class impatient 
customers in parallel-server queueing systems—call 
centers being a canonical example. Customers in such 
systems are modeled as being one of many classes, and 
each class is associated with class-specific service and 
patience time distributions as well as cost characteris-
tics. At the time of arrival, each customer’s class is iden-
tified, and the customer is placed at the end of a queue 
corresponding to that class. The system manager’s 
objective is to route idle servers to customers in order to 

minimize the abandonment and waiting costs aggre-
gated over all arriving customers.

To achieve this objective, existing research proposes a 
number of scheduling policies and proves the optimal-
ity of these policies in asymptotic regimes. Examples 
include the well-known hµ=γ�policy (Atar et al. 2010) 
for exponential patience times and the generalized hµ=γ�
policy (Long et al. 2020) for nonexponential patience 
times. An implicit yet fundamental assumption in 
these policies is that customers belonging to the same 
class are processed in a first-come, first-served (FCFS) 
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manner. However, as Bassamboo and Randhawa (2015) 
suggest, processing customers of the same class under 
FCFS itself is suboptimal; deviating from FCFS to allow 
within-class prioritization can lead to significant cost 
benefits relative to FCFS.

These benefits are primarily driven by another dimen-
sion of customer heterogeneity that is less understood in 
the literature. From the system’s perspective, customers 
of the same class at the time of arrival get further differ-
entiated on their residual patience time as they wait in 
the system. This is because, at the time of arrival, the sys-
tem manager only knows the overall patience distribu-
tion from which an arriving customer’s patience value is 
drawn, and as time elapses, the estimate of the custo-
mer’s residual patience time can be updated. For nonex-
ponential patience distributions, such an update indeed 
reveals additional information. Bassamboo and Rand-
hawa (2015) use this information to propose a time-in- 
queue (TIQ) policy that differentiates customers of the 
same class based on their time in queue and shows that 
this policy can significantly outperform FCFS in certain 
circumstances.

These findings bring a natural question of how to 
incorporate this new dimension of customer heteroge-
neity into a multi-class analysis when customers at time 
of arrival are already heterogeneous in their classes. 
Correspondingly, a scheduling policy for a multi-class 
queueing system can be viewed as comprising two deci-
sions: when a server becomes available, to which cus-
tomer class should the server be allocated and, then, to 
which customer within that class should the server be 
allocated. Noting the analytical difficulty in obtaining 
an exact solution, we undertake a fluid-based approach 
and study the optimal policy in a fluid model of an over-
loaded queueing system. We then use the fluid solution 
to propose scheduling policies for the original stochastic 
queueing system.

Our fluid optimization yields some key insights. We 
show that the fluid solution for multi-class systems 
splits at most one customer class into two subclasses. 
This strengthens the result in Bassamboo and Rand-
hawa (2015) developed for single-class systems in which 
the class is split into at most two subclasses. In other 
words, although, in principle, we allow differentiation 
and prioritization within each class, the fluid optimal 
policy only differentiates customers on their wait times 
for at most one class, and all other classes are processed 
under FCFS.

We use this observation to propose a scheduling pol-
icy for the stochastic system in which all but one class 
are processed under FCFS. We refer to this policy as 
mostly-FCFS. For this, we introduce an easy-to-compute 
index that allows us to divide all classes into three sets 
labeled as high priority F (these classes are fully served, 
and asymptotically, no customers from these classes 
abandon), medium priority P (these classes are partially 

served), and low priority E (these classes are not served 
at all, and asymptotically, all customers from these clas-
ses abandon). The set F consists of classes that are given 
full priority over classes in other sets, followed by the 
classes in P and, finally, those in E. The set P has at most 
one class that is processed under non-FCFS.

The mostly-FCFS policy simplifies considerably if the 
customer-based costs are solely due to abandonments. 
In this case, this policy reduces to a pµ priority rule that 
prioritizes classes based on the ranking of the penalty 
per abandonment, p, times the service rate of each class, 
µ, and processes customers within each class under 
FCFS. This policy can hold under general patience distri-
butions because, in overloaded systems, the abandon-
ment metric depends primarily on the rate imbalance 
between the arrival and service processes irrespective of 
the patience distributions. Noting that, for exponential 
patience times, a queue length–based objective can be 
expressed in terms of an abandonment-based objective, 
we obtain that the hµ=γ�(holding cost × service rate ×
mean patience time) priority policy is optimal for the 
queue-length metric. In fact, Atar et al. (2010) shows that 
this policy is asymptotically optimal at the fluid scale; 
that is, its optimality gap divided by the system size 
tends to zero as the system size grows indefinitely. We 
strengthen this result by showing that this policy is in 
fact O(1)-optimal for Markovian systems; that is, its 
(unscaled) optimality gap to the optimal policy remains 
bounded as the system size grows without bound.

Turning to the queue-length metric under general 
patience distributions, if the patience time distributions 
have decreasing hazard rates, our proposed policy en-
tails processing each class under FCFS and prioritizing 
different classes using a ranking that depends on the 
entire patience time distribution of each class beyond its 
mean. If the patience time distributions have increasing 
hazard rates, our proposed policy becomes the hµ=γ�pri-
ority policy with one important caveat, that is, proces-
sing one class under the last-come, first-served (LCFS) 
policy. We show that this distinction is important and 
the performance can drop significantly if we process all 
classes under FCFS.

As an alternative to the mostly-FCFS policy, we pro-
pose a multi-class time-in-queue policy, and we refer to 
it as mTIQ. This policy has a more robust implementa-
tion but requires differentiating in real time customers 
of all classes based on their time in queue. Unlike the 
mostly-FCFS policy, which requires the knowledge of 
the total capacity to compute the threshold wait times 
associated with classes in the set P, this information is 
not needed to implement the mTIQ policy. The mTIQ 
policy assigns an available server to the class that cur-
rently has the highest cost gradient. That is, whenever a 
server becomes idle, it is allocated to the class that cur-
rently has the highest marginal benefit of utilizing that 
server and, then, within that class, allocated to a customer 
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using the TIQ policy. We demonstrate that the mTIQ pol-
icy is robust to changes in capacity levels and this robust-
ness is also exhibited for the queue-length metric under 
patience time distributions with increasing hazard rates.

Finally, we extend our policies to systems with depen-
dent service and patience times within each class. We 
find that, in some cases, our proposed policies are identi-
cal to those under independent service and patience 
times within each class, whereas in other cases, these pol-
icies can be very different, and further, in these cases, 
there can be significant benefits of utilizing our proposed 
policies that take into account the underlying within- 
class dependence.

1.1. Literature Review
Our work is related to a growing literature on scheduling 
heterogeneous impatient customers in service queueing 
systems. This literature assumes that customers are a pri-
ori differentiated by certain characteristics, such as ser-
vice or patience time distributions or cost parameters. 
Exact analysis of the optimal scheduling policy is often 
intractable (a notable exception is Down et al. 2011, who 
establish the optimal policy for a two-class, single-server 
system); thus, a common mode of analysis in this litera-
ture is to build on the fluid or diffusion approximations 
to original queueing systems to develop optimal policies 
in asymptotic regimes. For example, Dai and Tezcan 
(2008) employ diffusion approximations to develop poli-
cies for parallel-server systems with pool-dependent ser-
vice times. Gurvich and Whitt (2010) propose control 
policies for parallel-server systems that maintain fixed 
queue ratios to meet service-level targets. Kim et al. (2018) 
study multi-class queueing systems with heterogeneous 
patience time distributions and constructs near-optimal 
policies by solving a diffusion control problem. Apart 
from diffusion approximations, fluid approximations are 
also commonly used to develop scheduling policies for 
large systems. Examples include Atar et al. (2010), who 
prove the asymptotic optimality of the hµ=γ�priority rule 
under exponential patience times and linear cost func-
tions. Long et al. (2020) extend the hµ=γ�priority policy to 
allow nonexponential patience times and general cost 
functions. Long and Zhang (2019) propose a virtual allo-
cation policy that assigns a fixed portion of servers to 
each class and proves the asymptotic optimality of this 
policy when patience time distributions have decreasing 
hazard rates. As mentioned, an implicit yet fundamental 
assumption in this literature is that customers within 
each class are processed under FCFS although Bas-
samboo and Randhawa (2015) suggest that deviating 
from FCFS to allow within-class differentiation can 
lead to significant benefits in some circumstances. 
Bassamboo and Randhawa (2015) further propose a 
TIQ policy for a single-class queueing system that 
allocates servers to customers based on their time in 
queue. However, it is not clear from Bassamboo and 

Randhawa (2015) how the TIQ policy defined in that 
paper extends to our multi-class systems for which 
scheduling policies must specify the joint allocation of 
capacity both across classes and within each class bet-
ween customers with different wait times. To answer this 
question, we generalize their single-class analysis to 
multi-class systems. We introduce an index that mea-
sures the marginal benefit of allocating capacity to each 
class with the TIQ policy applied and then use this index 
to propose two novel and easy-to-implement scheduling 
policies for multi-class queueing systems: mostly-FCFS 
and mTIQ. It is worth noting that, although, in princi-
ple, we allow differentiation and prioritization within 
each customer class, the mostly-FCFS policy can be im-
plemented by deviating from within-class FCFS for at 
most one class. This endows the mostly-FCFS policy 
with fairness benefits and practical relevance.

Our fluid optimization builds on Whitt’s (2006) fluid 
approximation to single-class G=GI=n+GI queueing sys-
tems under FCFS. Kang and Ramanan (2010) and Zhang 
(2013) formally prove that Whitt’s fluid model is a bona 
fide fluid limit in the many-server heavy-traffic regime. 
Because we can reduce our multi-class scheduling prob-
lem to a subclass-based optimization problem that pro-
cesses each subclass under FCFS, the single-class fluid 
analysis in Whitt (2006) readily applies. Such a fluid 
model can often yield accurate approximations to large 
stochastic queueing systems in the overloaded regime 
(Bassamboo and Randhawa 2010, Bassamboo et al. 2010). 
Motivated by this, we directly work with a fluid model in 
this paper. A similar fluid approach is employed in Bas-
samboo and Randhawa (2015) and Wu et al. (2018) to 
study queueing systems with dependent service and 
patience times. (Reich 2012 presents empirical evidence of 
such dependence.) We extend our policies to incorporate 
such dependence in Section 6.

2. Model
2.1. Queueing System
We consider a multi-class parallel queueing system, in 
which m classes of customers are processed by a single 
pool of N agents, each processing work deterministi-
cally at a unit rate. Customers of each class i � 1, : : : , m 
arrive to the system according to a stationary renewal 
process with arrival rate Λi. Customers of each class 
have independent and identically distributed (i.i.d.) ser-
vice times with the cumulative distribution function 
denoted by Gi(·) and mean service time denoted by 
1=µi. Each customer is associated with a patience time 
and abandons the system if service does not start within 
this time upon the customer’s arrival. We denote the 
cumulative distribution function of class i customers’ 
patience times by Fi(·), the probability density function 
by fi(·), and the reciprocal of the mean patience time by 
γi. Each customer’s patience time is independent of the 

Bassamboo, Randhawa, and Wu: Scheduling Heterogeneous Impatient Customers 
1068 Manufacturing & Service Operations Management, 2023, vol. 25, no. 3, pp. 1066–1080, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
3.

89
.8

8.
16

9]
 o

n 
21

 S
ep

te
m

be
r 

20
23

, a
t 1

7:
58

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



customer’s service time (we discuss dependent service 
and patience times within each class in Section 6).

The system manager’s goal is to find a scheduling pol-
icy that routes idle agents to customers in order to mini-
mize the long-run average costs. Specifically, let ξi(x, 
y, w) denote the cost experienced by a class i customer 
who has service time x, patience time y, and offered 
waited w (which is the amount of time the customer 
would wait before entering service if the customer were 
infinitely patient). Denote the set of all nonanticipating 
(non-forward-looking) policies by Π. For any policy 
π ∈Π, the total customer-based cost can be written as

inf
π∈Π

Xm

i�1
ΛiE[ξi(Xi, Yi, Wπ

i )], (1) 

where Wπ
i is the random variable representing the 

steady-state offered wait for a class I customer with 
patience time Yi and service time Xi under the policy π. 
The expectation is taken over the random variables Xi, 
Yi, and Wπ

i .
With an appropriate choice of cost function ξi in (1), 

we can capture different system costs. Specifically, we 
can capture abandonment costs by setting ξi(x, y, w) �
piI(y < w) with pi denoting the penalty per abandoned 
class i customer. To capture queue-length costs, we can 
set the cost rate as ξi(x, y, w) � hi min{y, w} with hi de-
noting the cost per unit time waiting in queue per class I 
customer. We can further capture the holding cost for 
all customers in the system by setting the cost rate 
as ξi(x, y, w) � hi(min{y, w} + xI(y > w)), which incorpo-
rates a customer’s total time spent in the system (time in 
queue and in service). We can also consider combining 
abandonment and queue-length costs by adding up their 
corresponding cost functions.

While this formulation allows us to work with general 
cost functions, we focus on analyzing the abandonment 
and queue-length cost functions to draw clean insights. 
We then discuss how our analysis extends to other 
(more general) cost functions.

2.2. Fluid Model
A scheduling policy for the queueing system in our multi- 
class setting comprises two decisions: when a server 
becomes available, to which class should the server be 
allocated and, then, to which customer within that class 
should the server be allocated. Noting the analytical 
intractability of an exact solution, we undertake a fluid 
approach to solve the policy optimization problem. This 
is a typical approach in dealing with intractability of 
stochastic systems and affording an intimate relation bet-
ween the policies for the fluid model and the original 
queueing system.

In the fluid model, customers arrive to the system in 
the form of a fluid both deterministically and continu-
ously at the corresponding arrival rate. Further, the 

capacity is considered in a fluid manner too and can be 
allocated fractionally to different classes. Thus, when 
considering the fluid version of a scheduling policy in 
steady state, the first decision of to which class allocate 
an idle server becomes equivalent to computing the frac-
tion of capacity allocated to each class in steady state.

Regarding the second decision of to which customer 
within a class to allocate the server, we note that most of 
the existing literature focuses on FCFS by allocating the 
server to the longest waiting customer in each class. In 
this paper, we build on Bassamboo and Randhawa 
(2015), who suggest that deviating from FCFS to allow 
within-class prioritization can lead to cost benefits under 
nonexponential patience time distributions. Bassamboo 
and Randhawa (2015) show that the decision of how to 
allocate servers within a class in the fluid model can be 
solved by splitting the class into at most two subclasses 
and processing each subclass under FCFS. This policy can 
be connected back to the fluid model using a TIQ policy.

In our multi-class setting, the two decisions of how to 
allocate servers across classes and then to which cus-
tomer within a class to allocate a server are inherently 
linked. We next analyze the fluid-optimization problem 
to obtain a fluid solution, and we discuss in Section 4
how to implement the fluid solution in the original sto-
chastic queueing system.

We formulate our fluid optimization problem in two 
stages: the first stage focuses on allocating capacity 
across classes and, then, the second stage optimizes the 
capacity allocated to each subclass within a class follow-
ing the first stage allocation. The first stage optimization 
problem can be stated as follows:

min
{n:
P

ini≤N}

X

i
Ci(ni), (2) 

where Ci(ni) is the total cost incurred from class I by 
allocating capacity ni to that class.

To characterize Ci(ni), we utilize the solution app-
roach in Bassamboo and Randhawa (2015). Specifically, 
we divide each class into multiple subclasses, each oper-
ating under FCFS, and optimize the amount of capacity 
allocated to each subclass. We use J(i) to denote the 
number of subclasses created from class i. (If J(i) � 1, 
then there is only one subclass for class i, and it com-
prises the entire class.) We denote the arrival rate to sub-
class j � 1, : : : , J(i) by λi,j and the corresponding capacity 
allocated to this subclass by ni,j. Because the mean ser-
vice time of a class i customer is 1=µi, it follows that, in 
the fluid model, customers of subclass j can be processed 
deterministically at rate ni,jµi. Moreover, the capacity 
constraint states that 

PJ(i)
j�1 ni,j ≤ ni, where the inequality 

allows us to withhold capacity when necessary.
The offered wait for subclass j of class i solves a “rate 

balance” equation so that the rate of customers entering 
service (accounting for customer abandonment) equals 
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the service rate. In this way, if λi,j ≥ ni,jµi, then the 
offered wait wi,j solves

λi,jF̄i(wi,j) � ni,jµi, (3) 
and otherwise, if λi,j < ni,jµi, then wi,j � 0 because this 
subclass has excess capacity to process all arrivals with-
out delays. Thus, the offered wait wi,j solves

λi,jF̄i(wi,j) �min{ni,jµi,λi,j}: (4) 
Using the offered wait wi,j for subclass j of class i, we 
characterize the average customer-based cost for a rep-
resentative customer in this subclass as

c̄i(wi,j) �

Z

y

Z

x
ξ(x, y, wi,j)dGi(x)dFi(y): (5) 

The total cost rate for subclass j is λi,jc̄i(wi,j). Then, the 
cost function Ci(ni) for class i is obtained as the optimal 
objective value of the following (second stage) within- 
class optimization problem:

Ci(ni) � inf
{J(i),ni,j,wi,j,λi,j, j�1, : : : , J(i)}

XJ(i)

j�1
λi,jc̄i(wi,j) (6) 

s:t:
XJ(i)

j�1
λi,j � Λi,

λi,jF̄i(wi,j) ≤ ni,jµi,
XJ(i)

j�1
ni,j ≤ ni:

Naturally, the optimal capacity allocation across classes 
obtained by solving (2) depends on the marginal benefit 
of allocating capacity to each class, which further de-
pends on the optimal within-class allocation across sub-
classes obtained by solving (6). Hence, it is important to 
first characterize the optimal solution to (6). We next 
review the main results in Bassamboo and Randhawa 
(2015) on the single-class analysis that help with this.

2.3. Single-Class Analysis
The optimization problem (6) determines the optimal 
capacity allocation across subclasses within class i. Bas-
samboo and Randhawa (2015) provide a structural 
result for this allocation, which we restate subsequently. 
That is, the optimal solution splits a single class into at 
most two subclasses.

Lemma 1. The optimal number of subclasses in the optimi-
zation problem (6) satisfies J∗(i) ≤ 2.

It is useful to introduce w̄i(·), which denotes the 
offered wait as a function of capacity when the entire 
class i is processed under FCFS. If Λi < niµi, then the 
offered wait under FCFS equals zero, and the cost for 
this class Ci(ni) trivially equals zero too. Otherwise, if 
Λi ≥ niµi, then the offered wait w̄i(ni) under FCFS solves

λiF̄i(w̄i(ni)) � niµi: (7) 

In this case, it is easy to see that the optimal allocation 
utilizes the entire capacity. Then, using Lemma 1, we 
can write (6) as follows:
Ci(ni) � min

{wi,1, wi,2,λi,1,λi,2}
λi,1c̄i(wi,1) + λi,2c̄i(wi,2) (8) 

s:t λi,1 + λi,2 � Λi, (9) 
λi,1F̄i(wi,1) + λi,2F̄i(wi,2) � µini,

(10) 
wi,1 ≤ w̄i(ni) < wi,2, (11) 
λi,1,λi,2 ≥ 0: (12) 

Constraint (11) is equivalent to wi,1 < wi,2 and wi,2 >

w̄i(ni), collectively ensuring that FCFS is represented by 
a unique offered wait vector. (In the absence of (11), one 
could potentially also represent FCFS by setting both 
wi,1 and wi,2 equal to w̄i(ni) and setting an arbitrary 
λi,1 ∈ (0,Λi).) Note that, for any (wi,1, wi,2) satisfying (11), 
Relations (9) and (10) allow us to uniquely determine 
λi,1 and λi,2 as follows:

λi,1 �
µini�ΛiF̄i(wi,2)

F̄i(wi,1)� F̄i(wi,2)
,

λi,2 �Λi�λi,1:

Thus, we can consider (8) as an optimization problem 
over the variables (wi,1, wi,2) only. We denote an opti-
mizer to this problem by (w∗i,1, w∗i,2).

If the optimal solution to (8) gives w∗i,1 � w̄i(ni), then it 
is optimal to have only one subclass for class i. In this 
case, our formulation generates multiple optimal solu-
tions because setting w∗i,2 to any amount greater than w̄i 
does not affect this one-subclass solution. Specifically, 
we have λ∗i,1 �Λ�and λ∗i,2 � 0 for all such w∗i,2. For conve-
nience, we set w∗i,2 �∞ in this case. Also note that, in our 
formulation, the LCFS policy can be represented by an 
offered wait vector (0,∞); that is, one subclass has zero 
offered wait and is served immediately, whereas the 
other subclass is never served and abandons after wait-
ing out its patience time.

3. Optimizing the Fluid Model
The analysis in Section 2.3 answers the question of how 
to allocate capacity within a class. Yet it does not answer 
how to allocate capacity across classes, a decision that 
must be made before one can further allocate capacity 
within a class. To this end, we introduce an index that 
measures the marginal value of allocating capacity to a 
class, taking into account the optimal within-class allo-
cation (6). We then apply this index to rank and priori-
tize across classes.

3.1. Characterizing the Optimal Solution
We first establish a structural property of the class- 
dependent cost function Ci(·) as the optimal objective 
value of (6).
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Lemma 2. The cost function Ci is nonincreasing and con-
vex. Further, Ci(n) is differentiable for all n < Λi=µi.

Lemma 2 proves that, even though there may be mul-
tiple solutions to (8), the class-dependent cost function 
is differentiable for all n < Λi=µi. We denote the nega-
tive of the derivative of the cost function by

βi(n) :��Ci
′(n) for n <Λi=µi:

In other words, βi(n) is the marginal decrease in cost 
when capacity allocated to this class is increased, in other 
words, the marginal benefit of capacity. Notice that the 
cost function Ci may not be differentiable at n � Λi=µi. 
This is so because, for n �Λi=µi, the processing capacity 
equals the incoming work, and thus, the offered wait is 
zero and the cost Ci(Λi=µi) � 0. At this level of capacity, 
the cost function may have different left and right deri-
vatives. In particular, increasing capacity has no impact 
on the already zero cost, and so the right derivative is 
zero. However, reducing capacity increases the cost, and 
this may happen in a manner such that the left derivative 
is strictly negative. To circumvent this issue, we define

βi(ni) :� lim
n↑ni
�Ci

′(n) for ni ≥ Λi=µi 

as the left-side limit.
We discuss how to compute this index β(·) for specific 

cost functions, namely, abandonment costs, in Section 
3.2 and queue-length costs in Section 3.3. However, 
using a general formulation of this index, we are able to 
solve the multi-class fluid optimization problems (2) 
and (6). To facilitate our characterization of the optimal 
solution, we first provide a structural property of the 
total number of subclasses in the optimal solution.

Proposition 1. The fluid-optimal solution to (2) with Ci 
defined in (6) splits the m customer classes into at most 
m + 1 subclasses. In particular, J(i) > 1 for at most one 
class i, and further, for this class, we have J(i) � 2.

Bassamboo and Randhawa (2015) show that, when 
focusing on a single class, the fluid-optimal solution 
splits the class into at most two subclasses (cf. Lemma 
1). So, for our multi-class optimization problem, it seems 
a priori a good idea to split each class into two sub-
classes. However, Proposition 1 shows that, somewhat 
surprisingly, the fluid-optimal solution splits at most 
one class. In other words, although we allow differentia-
tion within each class, the optimal policy differentiates 
among customers of at most one class.

Now, using Proposition 1 and the index β, we charac-
terize the optimal solution to the fluid optimization pro-
blems (2) and (6) under general cost functions.

Proposition 2. Defining sets of classes F :� {l : n∗l �Λl=

µl}, P :� {l : 0 < n∗l <Λl=µl}, and E :� {l : n∗l � 0}. For any 
f ∈ F , p ∈ P, and e ∈ E, we have

βe(0) ≤ βp(n
∗
p) ≤ βf (n

∗
f ): (13) 

Further, for any p, p′ ∈ P, we have
βp(n

∗
p) � βp′ (n

∗
p′ ): (14) 

In addition, we have J∗(i) � 1 for all i ∈ F ∪ E, and there is 
at most one class is in P with J∗(is) � 2.

Proposition 2 characterizes the necessary conditions 
that the optimal capacity allocation across classes must 
satisfy. The relation βe(0) ≤ βp(n∗p) in (13) must hold 
because it states that no class in E should be allocated 
any capacity, and thus, for this to be optimal, the mar-
ginal value of allocating capacity to these classes must 
be less than the marginal cost of decreasing capacity 
from any class p in P. A similar reasoning suggests that 
all classes within the set P should have equal marginal 
values of increasing capacity. Among the set P, at most 
one class can have two subclasses as a result of Proposi-
tion 1. Finally, βp(n∗p) ≤ βf (n∗f )must hold because it states 
that the marginal value of allocating capacity to any 
class p in P should be less than the marginal cost of 
decreasing capacity from any class f in F .

Notice that, by Lemma 2, our optimization problem is 
convex, and thus, the conditions listed in Proposition 2
are also sufficient. However, the objective function is not 
strictly convex in general, and there can be multiple opti-
mal solutions. As we show in the following sections, with 
additional regularity conditions on patience time distribu-
tions and cost functions, the objective function is strictly 
convex so that there exists a unique optimal solution.

We next focus on specific cost functions to draw clean 
insights. We show how Proposition 2 applies to these 
special cost functions and can be further strengthened.

3.2. Abandonment Metric
For the abandonment metric, we obtain the cost func-
tion ξi(x, y, w) � piI(y < w) for all classes i � 1, : : : , m. 
Thus, for a subclass with offered wait w, we have 
c̄i(w) � piFi(w):

In (6), the objective function now can be written as
X

j
λi,jpiFi(wi,j) �

X

j
pi(λi,j � ni,jµi)

+, 

where the equality follows from the definition of wi,j in 
(4). Hence, the optimization problem reduces to
Ci(ni) � min

{J(i),ni,j,λi,j, j�1, : : : , J(i)}

X

j
pi(λi,j� ni,jµi)

+

s:t:
XJ(i)

j�1
λi,j �Λi,

X

j
ni,j ≤ ni:

(15) 

It then follows from (15) that Ci(ni) � pi(Λi�µini)
+. 

Thus, the marginal gain in cost for class i when increas-
ing the capacity allocated to this class is equal to

βi(ni) �
piµi, if Λi ≥ niµi,
0, otherwise:

�

(16) 
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Proposition 2 implies that the solution to (2) and (6) has 
a “bang-bang” structure based on the penalty cost rate 
piµi, in which classes are processed up to the available 
capacity in descending order of their penalty cost rates, 
and once the capacity is exhausted, the remaining classes 
are not processed at all. Customers within each class are 
processed under FCFS, and so each class has only one 
subclass. The following result formalizes this solution.

Proposition 3. For the abandonment metric, if the classes 
are ranked such that piµi > pi+1µi+1 for i � 1, : : : , m� 1, 
then the solution to (2) and (6) is J(i) � 1 for all i � 1, 
2, : : : , m. Defining

i′ � inf
ℓ

Xℓ

i�1

Λi

µi
≥N

( )

, 

we have n∗i �Λi=µi for i < i′, n∗i′ �N�
Pi′�1

i�1
Λi
µi 

and n∗i � 0 
for i > i′.

3.3. Queue-Length Metric
We next consider the queue-length metric aggregated 
over customer-level holding costs. Specifically, we con-
sider ξi(x, y, w) � hi min{y, w} for i � 1, : : : , m, which 
gives the following class-dependent cost function

c̄i(w) � hi

Z w

0
F̄i(y)dy: (17) 

This leads to a more involved fluid-optimization prob-
lem than that under the abandonment metric. We plug 
this cost function (17) into (8) to obtain the fluid queue- 
length optimization problem. We next compute the 
marginal value of allocating capacity to class i. To this 
end, we use Hi(·) to denote the hazard rate of the 
patience time distribution of class i. The marginal value 
is computed by noting that, within class i, the capacity is 
utilized and allocated to subclasses optimally.

Lemma 3. For class i with arrival rate Λi and capacity 
ni < Λi=µi, the marginal value of increasing capacity to 
this class for the queue-length metric is given by

βi(ni) �

hiµi
Hi(w∗i,1)

, if w∗i,1 > 0,

hiµi
Hi(w∗i,2)

, if w∗i,1 � 0, w∗i,2 <∞,

hiµi
γi

, if w∗i,1 � 0, w∗i,2 �∞,

8
>>>>>>><

>>>>>>>:

(18) 

where (w∗i,1, w∗i,2) solves the fluid minimization problem (8) 
for the queue-length metric and Hi(w) � fi(w)=F̄i(w) is the 
hazard rate of the patience time distribution of class i.

The marginal value of increasing capacity to class i 
stated in Lemma 3 can be understood as follows. First, 
consider the case (w∗i1, w∗i2) � (0,∞), that is, when it is 
optimal to process class i under LCFS. In this case, a 
marginal increase in capacity leads to an increase in 

customers who can be processed immediately upon 
arrival instead of never being processed. Because the 
customers who are never processed wait on average 
1=γi time units before abandoning, the corresponding 
decrease in cost because of the increased capacity is 
βi(ni) � hiµi=γi. Next, consider the case in which FCFS is 
optimal for this class so that w∗i,1 � w̄i(n) and w∗i,2 >
w̄i(ni). In this case, the queue-length cost hiΛi

R w̄i(ni)

0 
F̄i(y)dy is captured by the area under the curve hiΛiF̄i(y)
over [0, w̄i(ni)] so that the marginal value of additional 
capacity is calculated as the product of the height of the 
curve, which is hiΛiF̄i(w̄i(ni)), and the marginal change 
in the interval length, which equals µi=(Λifi(w̄i(ni))). 
Multiplying them together, we obtain βi(ni) � hiµi=

Hi(w̄i(ni)). Finally, when the solution is of the form 
(0, w∗i,2), (w∗i1, w∗i2), or (w∗i1,∞), the same logic applies, 
and we obtain the marginal value βi(ni) � hiµi=Hi(w), 
where w � w∗i,1 if w∗i,1 > 0 and w � w∗i,2 otherwise. Note 
that, if w∗i,1 > 0 and w∗i,2 <∞, then the optimality of 
(w∗i,1, w∗i,2)within class i in fact implies Hi(w∗i,1) �Hi(w∗i,2)
(Bassamboo and Randhawa 2015, proposition 2).

Using the characterization of β�in Lemma 3, we can 
draw on Proposition 2 to provide more structures of the 
optimal solution to the fluid queue-length optimization 
problem when patience time distributions have cons-
tant or monotone hazard rates. We discuss this next.

3.3.1. Exponential Patience Time: Constant Hazard 
Rates. Under exponential patience times, we can sim-
plify the cost for each subclass j of class i to c̄i(wi,j) �
hi
γi

Fi(wi,j). Notice that this is identical to the cost under 
the abandonment metric by setting pi � hi=γi. Thus, 
Proposition 3 also characterizes the optimal solution to 
the fluid queue-length optimization problem.

3.3.2. Increasing Patience Time Hazard Rates. Now, 
consider patience time distributions with increasing 
hazard rates. In this case, the optimal solution for each 
class is captured by offered waits (0,∞), that is, to pro-
cess each class under LCFS (Bassamboo and Randhawa 
2015, corollary 1). An intuitive explanation for this pol-
icy is that, with increasing hazard rates, when splitting a 
class into two subclasses, the marginal value of increas-
ing capacity to the subclass with a lower offered wait is 
always greater than the marginal cost of decreasing 
capacity from the subclass with a higher offered wait, 
and thus, the optimal subclass configuration should be 
such that one subclass has a zero offered wait and the 
other has an infinite offered wait. Then, using Lemma 3, 
the marginal value of allocating capacity to class i is 
given by βi(ni) � hiµi=γi for ni <Λi=µi. It follows that 
the optimal solution under the queue-length metric is 
similar to that under the abandonment metric; that is, it 
is prescribed by Proposition 3 with the abandonment 
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penalty pi replaced by the queue-length related cost 
hi=γi. Proposition 1 further implies that at most one class 
is processed under LCFS and all other classes, if pro-
cessed, are processed under FCFS. We formalize these 
results as follows.

Proposition 4. If the patience time distributions of all clas-
ses have increasing hazard rates and, further, the classes 
are ranked such that hiµi=γi > hi+1µi+1=γi+1 for i � 1, : : : , 
m� 1, then for the queue-length metric, the solution to (2) 
and (6) is J(i) � 1 for all i ≠ i′ and J(i′) � 2, where

i′ � inf
ℓ

Xℓ

i�1

Λi

µi
≥N

( )

:

Moreover, we have n∗i �Λi=µi for i < i′, n∗i′ �N�
Pi′�1

i�1
Λi
µi 

and n∗i � 0 for i > i′. In the optimal solution, if 
Pi′

i�1 

Λi=µi >N, then class i′ has w∗i′1 � 0 and w∗i′2 �∞.

3.3.3. Decreasing Patience Time Hazard Rates. Next, 
consider patience time distributions with decreasing 
hazard rates. In this case, the optimal policy for each 
class is to have one single subclass for that class, that is, 
to process the entire class under FCFS (Bassamboo and 
Randhawa 2015, corollary 1). Thus, the marginal value 
of allocating capacity to class i is given by βi(ni) �

hiµi=Hi(w̄i(ni)) for all ni <Λi=µi, and this marginal value 
is decreasing in capacity ni. This implies that the objec-
tive function in (2) is strictly convex. Thus, we have the 
following characterization of the optimal solution.

Proposition 5. If the patience time distributions of all clas-
ses have decreasing hazard rates, then for the queue-length 
metric, the cost function Ci is strictly convex for all 
i � 1, 2, : : : , m, and there is a unique characterization of the 
optimal solution in the form (13) and (14) that utilizes the 
entire capacity. Further, no class is split into two sub-
classes, that is, J(i) � 1 for all i.

3.4. Combining Abandonment and Queue- 
Length Metrics

We next consider a cost function that combines aban-
donment and queue-length metrics. Specifically, this 
new cost function would be a sum of abandonment and 
queue-length costs, that is,

c̄i(w) � piFi(w) + hi

Z w

0
F̄i(y)dy: (19) 

Plugging this cost function into (8), we obtain the corre-
sponding fluid-optimization problem. As before, Propo-
sition 2 provides a structural property of the optimal 
solution to this optimization problem with the marginal 
value of allocating capacity to class i given as follows.

Lemma 4. For class i with arrival rate Λi and capacity 
ni < Λi=µi, the marginal value of increasing capacity to 

this class for the cost function c̄i in (19) is

βi(ni) �

piµi +
hiµi

Hi(w∗i,1)
, if w∗i,1 > 0,

piµi +
hiµi

Hi(w∗i,2)
, if w∗i,1 � 0, w∗i,2 <∞,

piµi +
hiµi
γi

, if w∗i,1 � 0, w∗i,2 �∞,

8
>>>>>>><

>>>>>>>:

(20) 

where (w∗i,1, w∗i,2) solves the optimization problem (8).

Another plausible way of combining abandonment 
and queue-length metrics would be to omit the holding 
cost for an abandoned customer when the penalty of 
losing that customer is already included in the cost func-
tion. For such a system, the class-dependent cost would 
be

c̄i(w) � piFi(w) + hiwF̄i(w): (21) 

To explain this cost function (that ignores holding cost 
for abandoned customers), note that the holding cost is 
only incurred for a F̄i(w) fraction of class i customers 
who eventually get served, and each of them waits w 
time units in the fluid system before getting served.

For this cost function, the following result charac-
terizes the marginal value of allocating capacity to each 
class, which we use to characterize the optimal solution 
in the spirit of Proposition 2.

Lemma 5. For class i with arrival rate Λi and capacity 
ni <Λi=µi, the marginal value of increasing capacity to 
this class for the cost function c̄i in (21) is

βi(ni) �

piµi + hiµi
1

Hi(w∗i,1)
�w∗i,1

 !

, if w∗i,1 > 0,

piµi + hiµi
1

Hi(w∗i,2)
�w∗i,2

 !

, if w∗i,1 � 0, w∗i,2 <∞,

piµi, if w∗i,1 � 0, w∗i,2 �∞,

8
>>>>>>><

>>>>>>>:

(22) 

where (w∗i,1, w∗i,2) solves the optimization problem (8).

4. Implementing the Fluid Solution in 
Queueing Systems

Recall that a scheduling policy for the multi-class queue-
ing system consists of two decisions: (1) when a server 
becomes idle, to which class should the server be allo-
cated and (2) to which customer within that class should 
the server be allocated. The analysis of the fluid optimi-
zation in the previous section provides guidance for 
developing scheduling policies for the stochastic queue-
ing system, and based on the fluid solution derived in 
the previous section, we propose two scheduling poli-
cies for the stochastic queueing system: a mostly-FCFS 
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policy that maintains within-class FCFS for all but at 
most one class and an mTIQ policy that optimally differ-
entiates customers of all classes based on their time in 
queue. These two policies are equivalent at the fluid 
level, but the mTIQ policy has additional robustness to 
changes in system parameters.

4.1. Mostly-FCFS Policy
In the previous section, we establish that the optimal 
solution to the fluid-optimization problem had an impor-
tant characteristic: there was at most one class, denoted 
by is, such that J∗(is) � 2; that is, in the fluid limit, custo-
mers of this class are split into two subclasses with differ-
ent wait times. Given this fact, we propose a mostly-FCFS 
policy in which all classes except class is are processed 
under FCFS. In fact, if there does not exist is such that 
J∗(is) � 2, then all classes would be processed under 
FCFS. We later discuss this special case. More generally, 
to decide to which class an idle server should be allocated, 
we differentiate classes based on their marginal values of 
increasing capacity using the index calculated from the 
fluid solution.

Formally, we propose the following priority policy to 
implement the fluid solution in the stochastic queueing 
system: 

1. First, process customer classes in the set F , and 
prioritize these classes in descending order of βi(n∗i ). 
Within each class, process customers under FCFS.

2. Then, process customer classes in the set P using 
the following rule.

a. First, consider customers of class i ∈ P such 
that i ≠ is (i.e., those with J(i) � 1). Process custo-
mers with wait times greater than w̄i(n∗i ) and give 
priority to the customer who has waited longest 
among them.

b. Then, if there exists a class with J∗(is) � 2 with 
(w∗is,1, w∗is,2) being the solution to the fluid optimiza-
tion problem (8), then process this class using the 
TIQ policy as follows (Bassamboo and Randhawa 
2015):

i. First, process customers who have waited 
more than w∗is,2 time units as well as customers 
who have waited less than w∗is,1 time units. 
Give priority to the customer who has waited 
longest among them.

ii. Then, process all remaining customers of 
class is. Give priority to the customer who has 
waited least among them.

Notice that, in step 1, for classes in the set F , any pri-
oritization policy of these classes would lead to a zero 
fluid offered wait of these classes because there is ample 
capacity to process all of them. However, because the 
marginal value of allocating capacity can vary across 
classes, we propose prioritizing these classes based on 
their marginal values of increasing capacity. Similarly, in 
step 2, the priority between (a) and (b) can be swapped 

because all classes in the set P have identical marginal 
values of increasing capacity.

In an overloaded system, this policy leaves no idle 
capacity in the steady state. However, to ensure nonid-
ling in the stochastic system, we augment this policy by 
allocating any idle server remaining after the primary 
allocation to, first, any of the classes in P and, then, any 
of the classes in E.

4.1.1. Settings in Which Mostly-FCFS Reduces to All-FCFS. 
Note that, under the mostly-FCFS policy, for all classes 
except class is, customers within each class are served 
under FCFS. That is, this policy serves all classes under 
FCFS with the exception of class is. Further, if we have 
J∗(i) � 1 for all classes, then the mostly-FCFS policy 
reduces to an all-FCFS policy.

Specifically, if we focus on the abandonment metric, 
then as per Proposition 3, the mostly-FCFS policy re-
duces to a pµ priority policy that processes all classes 
under FCFS and prioritizes classes in descending order 
of piµi. For the queue-length metric, if all patience time 
distributions have decreasing hazard rates, then as per 
Proposition 4, we again have J∗(i) � 1 for all classes so 
that the mostly-FCFS policy reduces to an all-FCFS pol-
icy. In this case, classes are prioritized in descending 
order of hiµi=Hi(w̄i(n∗i )), where n∗i is the solution to the 
fluid program (2) and w̄i is the solution to (7).

4.2. Multi-class TIQ Policy
Note that implementing the mostly-FCFS policy re-
quires computing the optimal fluid solution. We next 
extend the mostly-FCFS policy to a more robust mTIQ 
policy. This policy differentiates between customers of 
all classes based on their time in queue. It allocates an 
idle server to a target class so as to minimize the instan-
taneous fluid cost rate (defined in (16) for the abandon-
ment metric and in (18) for the queue-length metric 
using the current server allocation). In particular,

The mTIQ policy allocates an idle server to
a class in the set arg max

i
βi(min{ni, (Λi=µi)}), (23) 

where ni represents the current number of servers allo-
cated to class i. If the set arg maxi βi(·) is not a singleton, 
then ties are broken randomly. Once the class to which 
to allocate the server is identified using (23), the server is 
assigned to a customer within that class using the TIQ 
policy in Bassamboo and Randhawa (2015) (this TIQ 
policy is analogous to the one presented in 2(b) of the 
mostly-FCFS policy).

The mTIQ policy is motivated by the fact that the 
fluid-optimization problem is convex in the capacity of 
each class (cf. Lemma 2). The mTIQ policy utilizes a 
greedy allocation rule to obtain the fluid optimal solution 
as it starts with zero capacity allocated to each class and 
then allocates in a repeated manner available capacity in a 
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fixed and small increment to the class with the highest 
marginal value of capacity until the entire capacity is uti-
lized or the entire customer arrival rates are satisfied. 
Unlike the mostly-FCFS policy, which requires knowing 
the total capacity to compute the fluid solution (in particu-
lar, the offered waits associated with classes in the set P), 
this information is not needed to implement the mTIQ 
policy. In this sense, the mTIQ policy is more robust to 
changes in capacity levels.

4.2.1. The mTIQ Policy Can Have a Robust Implemen-
tation. Consider minimizing the queue-length metric 
for a system with increasing patience time hazard rates. 
The discussion preceding Proposition 4 suggests that 
the optimal fluid solution for each class is (0,∞); that is, 
each class should be processed under LCFS. Thus, 
within each class, the idle server is allocated to the most 
recently arriving customer. Further, we have βi(ni) �

hiµi=γi for all ni <Λi=µi (which does not depend on the 
current allocation ni), and thus, the mTIQ policy priori-
tizes classes in descending order of hiµi=γi and within 
each class processes customers under LCFS. This sug-
gests that the mTIQ policy has a more robust implemen-
tation as it operates (the optimal) within-class LCFS for 
all classes as opposed to the mostly-FCFS policy that 
operates LCFS for at most one class.

If we consider patience time distributions with de-
creasing hazard rates, then the mTIQ policy is almost the 
same as the mostly-FCFS policy with all classes being 
processed under FCFS but with one important caveat 
that idle servers are allocated to classes in descending 
order of hiµi=Hi(w̄i(ni)) in the mTIQ policy, where ni 
represents the current number of servers allocated to 
class i rather than the fluid optimal solution n∗i (which 
we use in the mostly-FCFS policy).

5. Performance of the Proposed Policy
In this section, we study the performance of our pro-
posed policies: mostly-FCFS and mTIQ. In Section 5.1, 
we provide a theoretical result for our policies in Mar-
kovian systems in which the interarrival, service, and 
patience times are all exponentially distributed. For such 
systems, we show that our proposed policies reduce to 
an hµ=γ�priority policy and exhibit O(1)-optimality as 
the system size grows; that is, its optimality gap relative 
to the optimal policy remains bounded as the system 
size grows without bound. Then, in Section 5.2, we per-
form numerical studies to demonstrate the perfor-
mance of our policies under nonexponential patience 
time distributions.

5.1 O(1)-Optimality in Markovian Systems
For Markovian systems, the patience time distributions 
are exponential, and following the discussion in Section 
3.3, we obtain that the mostly-FCFS and mTIQ policies 

both reduce to an hµ=γ�priority policy that prioritizes 
classes in descending order of hiµi=γi and processes cus-
tomers within each class under FCFS.

To formally state the result on the performance of this 
policy, we introduce the following notations. We denote 
the total arrival rate to all classes by Λ, and we write the 
individual arrival rates to each class and total number of 
servers in terms of Λ; that is, the arrival rate to class i is 
Λi � aiΛ, where ai > 0 and 

Pm
i�1 ai � 1. We fix the offered 

load at ρ > 1 by setting the number of servers as nΛ �
1
ρ (
Pm

i�1 ai=µi)Λ. We denote the average queue-length 
cost under the optimal policy by K∗Λ, the average queue- 
length cost under the hµ=γ�priority policy by Khµ=γ

Λ , and 
the optimal objective value of the fluid optimization 
problem (2) by C∗(nΛ,Λ).

Proposition 6. If the interarrival, service and patience 
times are all exponentially distributed, the classes are ranked 
such that hiµi=γi > hi+1µi+1=γi+1 for i � 1, : : : , m� 1, and 
for any fixed ρ > 1,

Pj
i�1
Λi=µi

nΛ ≠ 1 for all j � 1, : : : , m, then 
the hµ=γ�priority policy is O(1)-optimal. That is, there 
exists a finite constant A ≥ 0 such that

Khµ=γ
Λ �K∗Λ ≤ A, for all Λ > 0: (24) 

Further, the optimal cost is lower bounded by the solution to 
the fluid-optimization program. That is, K∗Λ ≥ C∗(nΛ,Λ).

This result shows that the optimality gap between 
our policy, namely, the hµ=γ�priority policy, and the 
optimal policy is bounded and does not grow with the 
system size. This result strengthens the finding in Atar 
et al. (2010) that the hµ=γ�priority policy is fluid-scale 
optimal for Markovian systems; that is, the optimality 
gap divided by the system size tends to zero as the sys-
tem size grows. In terms of the technical condition we 
impose to obtain the O(1)-optimality, we require the 
system to be effectively overloaded; that is, if we remove 
any class that is not processed at all in the fluid solution, 
then the remaining system is still overloaded. The con-

dition 
Pj

i�1
Λi=µi

nΛ ≠ 1
�

or, equivalently, 
Pm

i�1Λi=µiPj
i�1Λi=µi

≠ ρ
�

for all j � 1, : : : , m ensures that this is the case.

5.2. Numerical Study
We use simulations to illustrate the performance of our 
proposed mostly-FCFS and mTIQ policies. We simulate 
a two-class system in which customers arrive to the sys-
tem according to a Poisson process with a total arrival 
rate Λ. The service times of each class are exponentially 
distributed with unit mean, that is, µ1 � µ2 � 1. The 
queue-length holding costs are such that h1 � 1:5 and 
h2 � 1. For arrival rates Λ � 25, 50, 100,200 correspond-
ing to different system scales, we consider offered loads 
ρ � 1:05, 1:1, 1:5 by selecting the number of servers as 
nΛ � 1

ρ (
P

iai=µi)Λ �Λ=ρ.

Bassamboo, Randhawa, and Wu: Scheduling Heterogeneous Impatient Customers 
Manufacturing & Service Operations Management, 2023, vol. 25, no. 3, pp. 1066–1080, © 2023 INFORMS 1075 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
3.

89
.8

8.
16

9]
 o

n 
21

 S
ep

te
m

be
r 

20
23

, a
t 1

7:
58

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



5.2.1. O(1)-Performance for Markovian Systems. We 
start by demonstrating the O(1)-optimality of our pro-
posed policies for Markovian systems. In our sim-
ulations, we let the patience times of each class be 
exponentially distributed with mean two, that is, 
γ1 � γ2 � 0:5, and let the two classes share the same 
arrival rate, a1 � a2 � 0:5. Under exponential patience 
times, all customers of the same class in queue have an 
identical residual patience time because of the memory-
less property. This reduces our proposed mostly-FCFS 
and mTIQ policies to the hµ=γ�priority policy.

We compare the cost obtained from the hµ=γ�priority 
policy (i.e., prioritizing class 1 over class 2 and proces-
sing each class under FCFS) with the fluid lower bound. 
For this numerical study, we report the average queue- 
length cost (per time unit) by simulating each queueing 
system for 10,000 time units and taking an average of 20 
independent runs; the 95% confidence interval half 
width is less than 1% of the reported values in all cases 
we consider. Table 1 presents the results and provides a 
numerical validation of Proposition 6: for Markovian 
systems, the cost difference between the hµ=γ�priority 
policy and the fluid lower bound remains bounded as 
the system size grows without bound. We also find that 
the cost difference is lower for systems with higher 
offered load ρ.

5.2.2. Performance of mTIQ Policy Under Lognormal 
Patience Times. We next illustrate the performance of 
our proposed policies under general patience time distri-
butions. We simulate a two-class system in which both 
classes have lognormal patience such that the natural 
logarithm of the patience times is normally distributed 
with mean one and variance four (this is obtained by set-
ting the mean and variance of the lognormal patience 

distribution to be e3 and (e10� e6), respectively). Again, 
we let the two classes have the same arrival rate, a1 �
a2 � 0:5. We compare the performance of the mTIQ pol-
icy, which allocates available servers to minimize the 
instantaneous cost rate, to other reasonable benchmarks, 
such as the hµ=γ�priority policy, the reverse hµ=γ�prior-
ity (that prioritizes classes in ascending order of hµ=γ) 
policy, and the virtual allocation policy in Long and 
Zhang (2019) (which assigns a fixed portion of servers to 
each class) with all these benchmark policies processing 
customers within each class under FCFS. Table 2 pre-
sents the results. We find that the mTIQ policy outper-
forms the reverse hµ=γ�priority and virtual allocation 
policies in all cases. (The mTIQ and virtual allocation 
policies are equivalent at the fluid scale under ρ � 1:5, so 
there are only tiny cost differences between these two 
policies for large systems.) We also find that the mTIQ 
policy performs slightly worse than the hµ=γ�priority 
policy when the system size (Λ�� 25 and 50) and offered 
load (ρ � 1:05 and 1.1) are not too large. Indeed, one can 
verify that the hµ=γ�priority policy is fluid-optimal in 
these cases. The mTIQ policy fails to strictly prioritize 
class 1 in smaller systems because of stochastic fluctua-
tion and, thus, performs slightly worse. However, as the 
system size grows, the effect of stochastic fluctuation 
diminishes, making the mTIQ policy effectively equiva-
lent to the hµ=γ�priority policy. We also observe that the 
mTIQ policy significantly outperforms the hµ=γ�priority 
policy in heavily loaded systems (ρ � 1:5) and the cost 
difference between these two policies grows with the 
system size. This is because these two policies have 
different fluid-level characteristics in heavily loaded 
systems: the mTIQ policy partially serves each class, 
whereas the hµ=γ�priority policy completely serves 
class 1 by always prioritizing that class.

Table 1. Performance of mTIQ Policy Relative to Fluid Lower Bound for Exponential Patience Times

ρ � 1:05 ρ � 1:1 ρ � 1:5

Arrival rate mTIQ Fluid Difference mTIQ Fluid Difference mTIQ Fluid Difference

25 6.0 4 2.0 7.5 6 1.5 19.1 18 1.1
50 8.5 6 2.5 11.6 10 1.6 35.2 34 1.2
100 12.9 10 2.9 21.3 20 1.3 69.3 68 1.3
200 22.7 20 2.7 38.8 38 0.8 135.2 134 1.2

Table 2. A Comparison of Steady-State Queue-Length Holding Cost of mTIQ, hµ=γ�Priority, Reverse hµ=γ�Priority, and 
Virtual Allocation Policies of Long and Zhang (2019) Under Lognormal Patience Times

ρ � 1:05 ρ � 1:1 ρ � 1:5

Arrival rate mTIQ hµ
γ Reverse Virtual mTIQ hµ

γ Reverse Virtual mTIQ hµ
γ Reverse Virtual

25 7.5 �1.9% +33% +12.4% 9.9 �1.4% +33% +2.8% 33.4 +26% +82% +3.6%
50 10.1 �1.8% +38% +13.4% 14.4 �0.5% +41% +3.8% 59.5 +33% +94% +0.9%
100 14.6 +0.0% +42% +16.7% 25.6 +0.6% +45% +2.6% 116.9 +41% +109% +0.4%
200 24.6 +0.1% +46% +14.8% 45.2 +0.4% +47% +2.2% 225.3 +46% +117% +0.3%
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5.2.3. Comparing mTIQ with Mostly-FCFS. We pro-
pose two scheduling policies for multi-class queueing 
systems: mostly-FCFS and mTIQ. Each policy has its 
advantages: mostly-FCFS has the least deviation from 
within-class FCFS and, thus, has advantages in fairness 
considerations, and mTIQ does not need the informa-
tion of total capacity and has robustness properties best 
exhibited for the queue-length metric under patience 
distributions with increasing hazard rates. In terms of 
their cost performance, both policies have the same 
fluid-level characteristics. Turning to smaller systems, 
we numerically find that there is no clear dominance 
between the two policies, and there are cases for which 
either one can dominate the other.

Recall that, under exponential patience times, both 
policies are trivially identical because the TIQ policy 
within each class is the same as FCFS. Table 3 compares 
the performance of the two policies under lognormal 
and Erlang patience distributions. We find that, between 
these two policies, mostly-FCFS performs slightly better 
under lognormal patience distributions, and mTIQ per-
forms slightly better under Erlang patience distributions 
(which have increasing hazard rates).

Given the similarity in the cost performance achieved 
by these two policies, we recommend considering both 
policies for the general prescription, selecting mostly- 
FCFS if there is a preference to adhere as close to within- 
class FCFS as possible, and selecting mTIQ if there is a 
preference to implement a more robust policy.

6. Dependent Service and Patience Times
In this section, we consider the scheduling problem 
for multi-class systems with dependent service and 
patience times within each class. Following Bassamboo 
and Randhawa (2015) and Wu et al. (2018), we assume 
that each class i customer arrives with a finite service 
and patience time, which are i.i.d. draws from a class- 
specific bivariate distribution; its probability density 
function is denoted by f D

i . We use Si and Ti to denote the 
bivariate random variables representing a class i custo-
mer’s service and patience times. Define

φi(w) :�
Z ∞

x�0

Z ∞

y�w
xf D

i (x, y)dydx, 

which represents the average amount of work required 
by a nonabandoning class i customer who has waited w 
time units in queue. Further define µi :� 1=φi(0), which 
represents a server’s average rate of processing class i 
customers that are not delayed in queue. For each sub-
class j of class i processed under FCFS, analogously to 
(4), the offered wait wi,j solves

λi,jφi(wi,j) �min ni,j,
λi,j

µi

� �

: (25) 

Using the offered wait in (25), the abandonment cost for 
this subclass is λi,jc̄i(wi,j) � piλi,jFi(wi,j). Notice that this 
abandonment cost is in general not equal to pi(niµi �

λi)
+ because the average processing rate of nonaban-

doning class i customers (Wu et al. 2018 terms this rate 
the effective service rate) may be different than µi. The 
queue-length cost for this subclass is hiλi,j

Rwi,j
0 F̄i(y)dy by 

applying Little’s law.
Similar to Section 3.2, when focusing on the fluid 

model, we can formulate the policy optimization prob-
lem as a two-stage optimization problem: the first stage 
optimizes the capacity allocation across classes as stated 
in (2), and the second stage optimizes the capacity allo-
cation across subclasses within each class. The counter-
part of (6) for systems with dependent service and 
patience times within each class is as follows:

inf
{J(i), wi,j,λi,j, j�1, : : : , J(i)}

XJ(i)

j�1
λi,jc̄i(wi,j)

s:t:
XJ(i)

j�1
λi,j � Λi,

XJ(i)

j�1
λi,jφi(wi,j) ≤ ni:

(26) 

Proposition 1 extends to the new fluid-optimization pro-
blems (2) and (26). In other words, the dependence 
between service and patience times within each class 
does not alter the structure of the fluid-optimal policy 
that implements within-class differentiation for at most 
one class.

To provide more insights into the fluid optimal policy, 
we consider a special class of joint service and patience 

Table 3. A Comparison of mTIQ and Mostly-FCFS Policies

Erlang patience Lognormal patience

ρ � 1:05 ρ � 1:5 ρ � 1:05 ρ � 1:5

Arrival rate mTIQ mostly-FCFS mTIQ mostly-FCFS mTIQ Mostly-FCFS mTIQ Mostly-FCFS

25 11.0 +0:5% 31.9 +4:1%* 7.5 �1:9%* 33.5 �1:5%*
50 15.8 +0:2% 55.7 +1:3%* 10.1 �1:7%* 59.6 �0:8%*
100 24.1 +0:1% 107.1 +0:4%* 14.6 �1:0%* 116.6 �0.2%
200 41.4 +0:0% 206.3 +0:0% 24.7 �0.4% 225.8 �0.1%

*Statistically significant at the 5% significance level.
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distributions generated by the Gaussian copula (see 
Cario and Nelson (1997) for a background of copulas and 
Wu et al. (2018) for an application of the Gaussian copula 
in queueing systems), and we denote this class of joint 
distributions by Gi :� Gi(fSi , fTi) with fSi and fTi being the 
marginal distributions of the service and patience times 
of class i. The Gaussian copula is a useful and flexible 
instrument to construct bivariate distributions with any 
arbitrary marginals and attainable correlation coefficients 
ri (Cario and Nelson 1997). To state our result, further 
define the conditional service time function gi(t) :�
E[Si | Ti � t], which represents the average amount of 
work required by a class i customer whose patience 
equals t time units.

We discuss how the structure of the fluid-optimal 
solution is affected by the dependence between the ser-
vice and patience times within each class. We focus on 
the abandonment metric because optimizing this metric 
yields a simple pµ priority policy in the absence of depen-
dence and provides a good benchmark with which to 
compare. The analysis of the queue-length metric follows 
analogously but creates additional complexity without 
offering new insights, so we omit it for brevity.

Recall that, when each class has independent service 
and patience times, the optimal policy is a pµ priority 
policy that prioritizes classes up to available capacity in 
descending order of their penalty cost of abandonment, 
and the marginal value of increasing capacity to each 
class is given by (16). Now, for systems with dependent 
service and patience times within each class, if gi is 
increasing for all classes, then customers within each 
class should be processed under LCFS (Bassamboo and 
Randhawa 2015, Wu et al. 2018). The marginal value of in-
creasing capacity to a class remains unchanged, namely, 
βi(ni) � piµi for ni < Λi=µi. As a result, the pµ priority 
policy that prioritizes classes in descending order of pµ
remains optimal. However, if gi is decreasing for all clas-
ses, then customers within each class should be pro-
cessed under FCFS (Bassamboo and Randhawa 2015, 
Wu et al. 2018). Correspondingly, the marginal value of 
increasing capacity to class i should be revised to

βi(ni) � pi=gi(w̄i(ni)) for ni <Λi=µi, 

where w̄i(ni) is the offered wait of class i processed 
under FCFS with capacity ni.

Based on these observations, we next provide a struc-
tural property of the fluid-optimal solution for systems 
with service and patience times generated by the Gauss-
ian copula within each class.

Proposition 7. Consider minimizing the abandonment cost. 
i. Suppose (Si, Ti) ∈ Gi with ri > 0 for each class i. Then, 

the pµ priority policy is optimal, and the optimal capacity 
allocation follows the structure specified in Proposition 3.

ii. Suppose (Si, Ti) ∈ Gi with ri < 0 for each class i. Define 
sets of classes F :� {l : n∗l � Λl=µl}, P :� {l : 0 < n∗l < Λl=µl}

and E :� {l : n∗l � 0}. If 
Pm

i�1Λi=µi >N, then E � ∅, F � ∅, 
and βp(n∗p) � βp′ (n∗p′ ) for any p, p′ ∈ P. If 

Pm
i�1Λi= µi ≤N, 

then all classes are in the set F .

Proposition 7 shows that the optimal policy under a 
negative dependence between the service and patience 
times within each class can be significantly different 
than the pµ priority policy, which is otherwise optimal 
under a positive dependence or no dependence within 
each class. Under a negative dependence, each class 
should be allocated some capacity because the marginal 
value of increasing capacity to a class that is not served 
at all can be extremely large. This is in contrast to the pµ
priority policy, which, under a limited total capacity, 
chooses not to allocate any capacity to classes with low 
abandonment costs. Further, under a negative depen-
dence, if the system is overloaded with insufficient 
capacity to process all arrivals, then no class should be 
served completely because the marginal cost of decreas-
ing capacity from a fully served class can be extremely 
small. In this case, each class should be allocated some 
capacity but not to the full level. This again is in con-
trast to the pµ priority policy, which prioritizes classes 
with high abandonment costs and serves those classes 
completely.

The mTIQ policy proposed in Section 4.2 extends in a 
straightforward manner to systems with dependent ser-
vice and patience times within each class. Whenever a 
server becomes available, the mTIQ policy allocates the 
server to the class with the highest instantaneous cost 
gradient by substituting the new expressions of βi(·)

into (23) and allocates this server to a customer within 
that class using the TIQ policy. We conduct a numerical 
study to demonstrate the performance of this policy. We 
follow the setting in Section 5.2 and consider a two-class 
system in which customers arrive to the system accord-
ing to a Poisson process with total arrival rates Λ �
25, 50, 100, and 200. Class i, i � 1, 2, has an arrival rate of 
aiΛ, where a1 � a2 � 0:5. The abandonment penalties are 
p1 � 1 and p2 � 1:5. For each arrival rate Λ, we consider 
different offered loads ρ � 1:05, 1:1, and 1.5 by selecting 
the number of servers as nΛ � 1

ρ (
P

iai=µi)Λ. The service 
and patience times of both classes are exponentially dis-
tributed with means one and two, respectively. They 
are independent for class 1 and are generated by the 
Gaussian copula with correlation coefficient r2 ��0:6 
for class 2.

We compare the performance of our mTIQ policy 
with other simple policies, namely, the pµ priority pol-
icy and the reverse pµ priority policy in Table 4. We find 
that the mTIQ policy significantly outperforms the pµ pri-
ority policy (which is the optimal policy that minimizes 
the abandonment cost in the absence of within-class 
dependence) in all cases, especially for large systems. This 
suggests a substantial loss in cost performance if one 
devises scheduling policies by considering the system 
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primitives within each class to be independent when they 
are indeed dependent. We also observe that, in some cases 
with moderate offered loads (ρ � 1:05 and 1.1), the mTIQ 
policy performs slightly worse than the reverse pµ prior-
ity policy. The cost differences between these two policies, 
however, are statistically insignificant and are covered by 
the 95% confidence interval. Indeed, in these cases, the 
mTIQ policy and the reverse pµ priority policy have the 
same fluid-level characteristics. For heavily loaded sys-
tems (ρ � 1:5), the mTIQ policy deviates from the reverse 
pµ priority policy at the fluid scale and, thus, outperforms 
the latter.

7. Conclusion
In this paper, we propose cost-minimizing scheduling 
policies for queueing systems with multiple customer 
classes characterized by their service and patience time 
distributions and cost parameters. Our policies differenti-
ate between customers across classes and further within 
each class based on the time they have spent in queue. 
We propose two policy types: mostly-FCFS and mTIQ, 
each performing reasonably well with its own useful 
properties. Mostly-FCFS is, as its name suggests, very 
close to processing all customer classes under FCFS and, 
in fact, processes at most one class under non-FCFS. This 
endows mostly-FCFS with fairness benefits. The mTIQ 
policy differentiates between customers of all classes 
and is robust to changes in system parameters. Under 
exponential patience times, both policies are equiva-
lent to a priority policy that we formally prove to be 
O(1)-optimal for Markovian systems; that is, the opti-
mality gap remains bounded even if the optimal cost 
grows without bound.

Our work can be extended in multiple directions. For 
the most part, we focus on analyzing the fluid model and 
translating the fluid solution to implementable schedul-
ing policies for stochastic queueing systems. Our theoreti-
cal results for exponential patience suggest that similar 
results may hold in nonexponential patience settings. A 
formal analysis of the asymptotic performance of our pro-
posed policies in these more general settings constitutes 
an interesting avenue for future study.

Our formulation of customer-based cost objectives 
can be extended to incorporate a reference effect that 
captures the notion of fairness. Considering fairness is 

especially important to classes that are processed under 
non-FCFS. We expect that a similar result to Proposition 1
(i.e., at most one class is processed under non-FCFS) con-
tinues to hold in this setting, but the index β�that mea-
sures the marginal cost benefit of increasing capacity to 
a class must be revised to reflect fairness considerations. 
A formal analysis of these fairness-based settings is an 
interesting direction for future study.

We also believe that the topic of dependent service and 
patience times should be explored further. In our work, 
we obtain tractability by focusing on copulas, which 
provide us with a specific framework for an insightful 
analysis. Extending this framework to a broader class of 
dependencies tied to empirically observed characteristics 
would be another valuable endeavor.
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