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Abstract

Bundle pricing is commonly adopted by service firms managing multiple congestion-
prone service facilities. Under bundle pricing, the firm sells all services as a single
package. This scheme is in contrast to a la carte pricing, whereby the firm sells each
service separately. The existing theory generally sees bundling as being more lucra-
tive when the marginal cost of production is low. However, little is known about how
bundling compares to & la carte pricing in service systems with delay-sensitive cus-
tomers, despite the prevalence of both practices. Our paper compares these two pricing
schemes in congested service systems. We find that the classical prescription can be
reversed in such congested service settings even in the absence of any marginal cost of
service provision. Specifically, bundling generates less revenue than a la carte pricing
when the potential arrival rate of customers is high relative to service capacity or when
customers are highly delay-sensitive relative to their valuation of services. Moreover,
the relative revenue difference between the two pricing schemes is non-monotone
in either the potential arrival rate or delay sensitivity, with the percentage revenue
loss from suboptimally practicing bundle pricing being the most substantial when the
potential arrival rate or delay sensitivity is intermediate. From an operational perspec-
tive, bundle pricing results in higher (resp. lower) capacity utilization and thus more
(resp. less) system congestion than a la carte pricing when the potential arrival rate is
low (resp. high). For customers, bundling generates higher consumer surplus when the
potential arrival rate is low or high, but may generate lower consumer surplus when the
potential arrival rate is intermediate. Our results offer normative guidance to service
firms considering these two pricing strategies and shed light on their operational and
welfare implications.
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1 Introduction

Should a firm offering multiple services individually price each of its services or sell
them together as a bundle? What role does congestion—a common phenomenon in
service systems—play in a firm’s choice between these two pricing strategies? To
put the questions into context, consider, for example, amusement parks. Some, such
as Disneyland and Universal Studios, with bigger brand names and more resources
to scale capacity, adopt bundle pricing, charging a single admission fee that grants
access to all the rides within a park, whereas others, local parks in particular, such
as Knoebels in Elysburg, Pennsylvania and Family Kingdom in Myrtle Beach, South
Carolina, adopt a la carte pricing, where guests pay for each attraction they visit.

Examples of both pricing schemes abound in service-oriented businesses. For
instance, a la carte pricing is commonly used by carnivals and fairs [31], whereas
bundle pricing is exemplified by CityPASS, which combines various sightseeing tours
into a ticket package [14], and the Buffet of Buffets pass, which entitles one to dine in
multiple Las Vegas buffet restaurants [38]. Museums vary in whether they sell admis-
sion to various exhibitions as a bundle or separately. Hotel resorts and cruise lines
may offer all-inclusive spa packages that cover massages, acupuncture, skin care, nail
care, etc., or they may let guests purchase these services on an individual basis. Gas
stations sometimes bundle fuel and car wash and sometimes choose not to do so.

“To bundle or not to bundle” is an age-old question that has long attracted attention
of academics and practitioners alike, yet one unique feature that distinguishes the
examples above is the presence of congestion-driven delay, i.e., due to the stochastic
nature of the underlying processes, customers often have to wait before receiving
their desired services, which, in turn, diminishes the appeal of those services and
reduces customers’ willingness to pay. Incorporating this congestion effect has subtle
implications for the firm’s pricing strategies. For a given price, how much a customer
waits depends on how many other customers are present, and therefore the amount of
congestion generated in the system is endogenously determined by customers’ own
interactions. This implies a firm aimed to maximize revenue not only faces the usual
price-demand trade-off, but also must appropriately pull the pricing lever to regulate
congestion. In particular, under bundle pricing, contrary to settings without congestion,
it may be rational for delay-sensitive customers to buy the bundle but forgo certain
services if they find the wait times at those facilities too long.

The extant bundling literature [1, 7, 21] often identifies bundling as being more
lucrative when the marginal cost of production is low. The rationale is that it reduces
customers’ valuation heterogeneity, thereby enabling more efficient surplus extraction.
How is this insight from the literature affected by the presence of congestion in service
systems? What is the impact of congestion on the revenue gap between the two pricing
schemes? What are the operational and welfare implications?

To address these research questions, we develop a queueing model in which a
monopoly firm managing two service facilities faces a market of delay- and price-
sensitive customers. Customers are interested in obtaining at most one unit of each
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service, but their valuations of the two services differ, and vary across individuals.!
In a la carte pricing, the firm sets a separate price for each service, whereas in bundle
pricing, the firm sets a single price for the two services combined. Based on the pricing
scheme with the associated price(s), and the expected delay at each facility, customers
first make their purchasing decisions (i.e., under a la carte pricing, which service
to purchase, if any; under bundle pricing, whether to purchase the bundle) and then
(particularly in the case of bundle pricing) decide on which service to use conditional
on a purchase. These purchasing and visiting decisions, in turn, determine the expected
delays in equilibrium.

We find that while bundle pricing continues to generate more revenue than a la
carte pricing when the potential arrival rate of customers is low relative to capacity
and customers’ delay sensitivity is low relative to their valuations of the services, the
reverse is true (i.e., bundle pricing generates less revenue than a la carte) when either
the potential arrival rate is high or customers are highly delay-sensitive. So, how can
the presence of congestion undermine the revenue advantage of bundle pricing? On
the one hand, bundling reduces customers’ valuation dispersion, causing them to cede
more information rent to the firm; on the other hand, it also implies that the right
tail of the valuation distribution becomes thinner, i.e., demand from high-valuation
customers falls. Nevertheless, high-valuation customers are exactly the segment the
firm crucially relies on in the presence of heavy congestion because delay costs drive
away low-valuation customers. Under a considerable congestion effect, the benefit
of reduced valuation dispersion is outweighed by the shrinkage of the high-valuation
segment, making bundle pricing less lucrative than a la carte pricing.

In this vein, the delay cost customers incur can be broadly interpreted as an implicit
marginal cost for the firm. In fact, high marginal costs are a known detriment to
the profitability of bundle pricing [1, 21, 40]. Recognizing this analog both connects
and contrasts our results with the bundling literature. However, marginal costs of
products are exogenously specified, whereas delay costs in services are endogenously
determined as an equilibrium outcome. This distinction has two ramifications: (1)
Customers directly internalize delay cost in service settings but not marginal cost in
product settings; (2) the delay cost is controlled by the firm’s price and varies with
pricing scheme adopted, but the marginal cost does not share these properties.

Difference (1) above drives our results on the relative revenue difference between
the two pricing schemes, which we find to be non-monotone in either the potential
arrival rate or delay sensitivity, with the percentage revenue loss from suboptimally
implementing bundle pricing (when the optimal scheme is a la carte) being the most
substantial when the potential arrival rate or delay sensitivity is intermediate; never-
theless, the revenue gap closes as the potential arrival rate gets very high or when
customers get excessively delay-sensitive. This contrasts the prediction from the
bundling literature, which would indicate the performance of bundle pricing worsens
(in terms of the percentage revenue loss relative to a la carte) as marginal cost increases.
One important implication of this result is that when the potential arrival rate is very
high or when customers are highly delay-sensitive, firms in practice may still prefer

! One of our key results on the revenue comparison between bundle pricing and a la carte [Theorem 1-(1)]
is established under fairly general valuation distributions, but for tractability, other results are developed
under a uniform valuation distribution.
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bundle pricing as its negligible (percentage) revenue loss may be outweighed by its
simplicity in implementation.

Difference (2) above motivates us to compare the total price and the resulting
capacity utilization (as a proxy for system congestion). We find that the optimal bundle
price is less than the total price one would pay to visit both facilities under a la carte
pricing. Thus, bundling effectively enables a price discount. When the potential arrival
rate is low, such a discount attracts more customers and translates into higher capacity
utilization (and thus longer expected delay for each service). However, when the
potential arrival rate is high, despite the discount effect, bundle pricing only results in
lower capacity utilization (and thus shorter expected delay for each service) than a la
carte pricing because bundling, in this case, targets only customers who highly value
both services and is more effective in regulating congestion.

We also study the impact of bundling on consumer surplus. We find that when the
potential arrival rate is sufficiently low or sufficiently high, bundle pricing generates
more consumer surplus than a la carte pricing. Combined with the earlier result on
revenue comparison, it implies that bundling can be a win—win situation for both the
revenue-maximizing service provider and customers when the potential arrival rate and
delay sensitivity are both low. Notably, when the potential arrival rate gets sufficiently
high, while bundle pricing and a la carte pricing are almost identical in their revenue
performance, consumer surplus under bundling is orders of magnitude higher than
that under a la carte, again because bundle pricing sells only to customers with high
valuations of both services. However, when the potential arrival rate is intermediate,
consumer surplus can be lower under bundle pricing.

We consider several model extensions, including asymmetric valuations, asymmet-
ric capacities and endogenous capacity. In addition to demonstrating robustness, we
also generate additional insights. For instance, we find that the asymmetries in val-
uations and capacities can strengthen the dominance of a la carte pricing in case of
heavy congestion. Furthermore, when the firm endogenously determines its capacity
in conjunction with the pricing strategy, we find that when the capacity cost is low
(resp. high), bundle pricing often causes the firm to maintain larger (resp. smaller)
capacity and generate more (resp. less) profit than a la carte pricing.

The remainder of the paper is organized as follows. Section 2 reviews the related
literature. Section 3 introduces the model setup. Sections 4 and 5 formulate the a la
carte pricing and bundle pricing problems, respectively. Section 6 compares these two
pricing schemes. Section 7 studies several model extensions. Section 8 concludes the
paper and discusses future research directions. All technical proofs are relegated to
the appendix.

2 Related literature

Our paper bridges two streams of the literature, one on product bundling and the other
on congestion pricing in queueing systems.

The literature on product bundling dates back to the seminal paper by Adams and
Yellen [1]. Largely through illustrative examples and graphical analysis, the authors
demonstrate bundling can generate more revenue than a la carte pricing even in the
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absence of complementarities in consumption or economies of scales in production.
Their results highlight bundling as a economic device to shape demand and practice
price discrimination. Schmalensee [40] and McAfee et al. [34] find that negative depen-
dence of customer valuations further contributes to bundling’s revenue advantage. Fang
and Norman [21] show that negative dependence is not necessary for bundling to work,
and that even under independent customer valuations, bundling can still outperform a
la carte pricing in a variety of settings. Another important message from these papers
is that bundling tends to generate more (less) revenue than a la carte pricing when
the marginal cost of production is low (high). In particular, information goods have
negligible marginal cost and thus lend themselves well to bundle pricing [7].

The bundling literature has also explored various supply-side aspects. McCardle et
al. [35] study how bundling impacts order quantities using a newsvendor model. Cao
et al. [13] examine the effectiveness of bundling under a supply constraint. Banciu et
al. [8] investigate bundling strategies of vertically differentiated products subject to
capacity constraints. Bhargava [9] and Chakravarty et al. [15] study bundling in a dis-
tribution channel where manufacturers and retailers interact. Cui et al. [19] investigate
ancillary services that are not valuable on their own but can be sold either as a separate
add-on, or together with the main service. Bundling main and ancillary services can
be viewed as a form of tying [10]. The reader is referred to Venkatesh and Mahajan
[42] for a survey of the bundling literature. None of the papers above has looked into
the question of bundling multiple congested services that involve customer waiting,
which is the focus of our paper.

To that end, our work builds on the literature of congestion pricing in queueing
systems. This literature originates from Naor [36] and Edelson and Hilderbrand [20].
We refer to Hassin and Haviv [25] and Hassin [24] for a comprehensive review of
this literature. Most of the existing queueing research focuses on the optimal pricing
of a single type of service. For instance, Chen and Frank [16] investigate the pricing
problem of a monopoly service provider. Anand et al. [5] introduce the quality-speed
trade-off to the congestion pricing problem. Cachon and Harker [12] and Allon and
Federgruen [4] examine multiple substitutable providers competing for customers that
request at most one unit of the service.

Like our paper, a scant strand of the literature does study how to price multiple
services, yet the models and research questions are quite different. Veltman and Hassin
[41] study a model of two services, one congested, and the other not; homogeneous
customers must request both or neither, and therefore, a la carte pricing is ruled out by
assumption. Afeche [2] considers a tandem-queue model of a service chain in which
each queue is managed by a separate entity that sets its own admission fee. In that
sense, that paper considers (decentralized) a la carte pricing only.

Our paper focuses on a setting in which customers can visit multiple service facilities
(at most once), and therefore nicely complements the service operations literature that
studies customers’ repeated usage of a single service. Randhawa and Kumar [39]
study the subscription pricing problem motivated by the rental business. Cachon and
Feldman [11] compare the pay-per-use scheme with subscription pricing in a queueing
environment.> Afeche et al. [3] study why priority should sometimes be offered in

2 We contrast bundle pricing with subscription pricing in detail in Sect. 6.3.
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membership programs even when customers are homogeneous in delay sensitivity.
Guo et al. [23] employ a feedback-queueing model to capture patient revisits and
compare fee-for-service with bundled payment as reimbursement policies.

3 Model setup

We consider a monopoly firm that operates two different service facilities, indexed
by i = 1,2. At each facility, the service times are independently, identically and
exponentially distributed with rate 1, and services are rendered on a First-In-First-Out
(FIFO) basis. We refer to u as the capacity of each facility. There is a separate queue
for each facility (as in the case of amusement parks where each ride has a line). While
the base model focuses on the case of both facilities having identical and exogenous
capacities, we will later take a two-pronged approach to relax these assumptions: We
will consider in Sect. 7.2 an extension of asymmetric (yet exogenous) capacities and
in Sect. 7.3 another extension of endogenous (yet symmetric) capacities.

Rational customers arrive (or their service needs arise) according to a Poisson
process with rate A, where A is referred to as the potential arrival rate. Each customer
isinterested in requesting at most one unit of service from each facility and is delay- and
price-sensitive, incurring a delay cost ¢ per unit time spent at each facility (including
service). We also refer to ¢ as customers’ delay sensitivity. Following Littlechild [32],
we assume that each customer’s (gross) valuation of service 7, v;, is independently
drawn from a common distribution with a continuous probability density function
(PDF) f over support [v, v] such that f(v) > 0forv € (v,v) and0 < v < v < 0.
Let F be the corresponding cumulative distribution function (CDF) and F £ 1 — F
be the complementary CDF. We note that assuming customer valuations of the two
services are drawn from the same distribution is common in the bundling literature
[9,21, e.g.,]; we follow this convention. In Sect. sec:asymmetricspsvaluation, we will
consider an extension in which customer valuations of different services are drawn
from different distributions. Table 1 provides a glossary of the main notation used in
the paper.

We consider two pricing schemes:

e A La carte pricing The firm sells the services separately by charging price p; for
access to service i.

e Bundle pricing The firm sells the services as a bundle by charging price pp for
access to both services.

Under either pricing scheme, the firm’s objective is to maximize its total revenue
generated from the two services offered by setting the optimal prices. The focus on
revenue (as opposed to profit) implies negligible marginal costs for serving an addi-
tional customer. This implicit assumption is applicable to many service systems, in
which staff tends to be salaried and facility costs are usually fixed; the focus on revenue
is also in line with the congestion pricing literature [20, 36, e.g.,]. We will extend our
analysis to profit maximization in Sect. sec:endogenousspscapacity where the firm
must incur higher costs to maintain larger capacity.
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Table 1 Glossary of main notation

Symbol Description

A Potential arrival rate

n Capacity

F,F , f CDF, complementary CDF, PDF of the valuation distribution

v,0 Lower bound and upper bound for the support of the valuation distribution

c Delay cost per unit time

k Capacity cost per unit time

v; An individual customer’s valuation of service i, i = 1, 2

Pi> PA A la carte price for service i, i = 1,2, and the optimal 2 la carte price

PB Bundle price

RA, R Revenue of a la carte pricing and bundle pricing, respectively

A Relative revenue difference (Rg — Rp)/Ra

UA, UB Capacity utilization under a la carte pricing and bundle bundling,
respectively

A Effective arrival rate for each facility i, i = 1, 2

D(pB), A(pB) Purchase rate of the bundle and effective arrival rate for each facility,
respectively, as a function of bundle price pg

W) =1/(nu — 1), the M/M /1 expected delay

Wi Expected delay at facility i,i =1, 2

w = (W1, W2)

0,0;,S; Cutoff values on customer valuations

G, C_;, g CDF, complementary CDF and PDF of the average valuation distribution

Under a la carte pricing, each customer decides whether to purchase each service,
and upon purchasing a service, she always visits the facility offering that service
(doing so is trivially rational). Under bundle pricing, each arriving customer decides
whether to purchase the bundle, and upon purchase, she further decides whether to
visit each service facility. Under both schemes, if she decides to visit both facilities,
then upon service completion at one facility, she joins the queue of the other one;
the visit sequence can be arbitrary. Customers do not renege from the queues they
join. The model primitives A, i, F, ¢ are common knowledge, but each customer is
privately informed of her valuations (vi, v2). As customers are often physically away
from the service facilities at the moment of purchase, their purchase decisions are
based on the expected delay.

Under either pricing scheme, there are potentially four (Poisson) streams of joining
customers differentiated by their routes through the queues: those who join queue 1
only; those who join queue 2 only; those who first join queue 1 and then queue 2;
and those who first join queue 2 and then queue 1.3 Such a queueing network (with
multiple customer classes and each class having a different route) is referred to as the

3 In an unobservable queueing system, a random customer joins each queue with a certain probability
(from a system standpoint, as shown in Sects. 4 and 5). This, combined with the Poisson thinning property,
implies that customers of each stream enter the queueing system according to a Poisson process.

@ Springer



29 Page 8 of 45 Queueing Systems (2025) 109:29

Kelly network [18, 28-30], which is a multi-class generalization of the (single-class)
Jackson network and also has a product-form steady-state distribution. Thus, each
facility has the same steady-state queue-length distribution as a standalone M /M /1
queueing system with the same effective arrival rate and service rate. Moreover, the
steady-state waiting times of the two queues are independent, making the ex post
waiting time at the first queue uninformative of the waiting time at the second queue.

To avoid triviality, we make the following assumption about the model parameters.

Assumption1 v < c/u < v.

Before we proceed to the formulations of the a la carte pricing problem (Sect. 4)
and the bundle pricing problem (Sect. 5), we first examine a benchmark case without
congestion to build intuition on the revenue comparison between the two pricing
schemes.

3.1 Benchmark: pricing without congestion

Without congestion, the problem reduces to optimal pricing of goods with zero
marginal costs (due to the focus on revenue), such as information goods studied in the
bundling literature [7, e.g.,]. Such a non-congestion benchmark can be obtained from
our model by letting capacity u tend to infinity (which would dispel congestion).

To fix ideas, let F be a uniform distribution over [0, 1]. Under a la carte pricing,
the optimal price for each service is 1/2; each service is purchased by half of the
customers, generating a total expected revenue 1/2 per customer. Under bundle pricing,
the optimal price for the bundle is +/6/3 (= 0.816); 2/3 of the customers purchase the
bundle, generating a total expected revenue 2+/6/9 (&~ 0.544) per customer. Hence,
bundling generates more revenue than a la carte pricing. The key driver for bundle
pricing’s superiority is the reduction of customers’ valuation dispersion, which allows
the firm to extract more surplus. Specifically, customer valuation of each service is
uniformly distributed, but their valuation distribution for the bundle is a convolution of
two uniform distributions—a triangular distribution, which is more centered around
and peaked at the mean, making it less dispersed than a single uniform distribution.
Due to this “valuation pooling” effect, bundle pricing is more of a volume strategy as
compared to 2 la carte pricing, with a lower total price charged (+/6/3 < 2 x 1/2) and
a higher sales volume induced (2/3 > 1/2).

Besides the uniform distribution, bundling is also more lucrative than a la carte
under many other common distributions such as Gaussian [40]. More generally, Fang
and Norman [21, Proposition 4] and Ibragimov and Walden [27, Theorem 4.2] give
sufficient conditions under which bundle pricing outperforms a la carte in revenue; and
these conditions tend to be satisfied by a variety of valuation distributions, suggesting
a widespread revenue advantage of bundle pricing.* In the sequel, we shall see how
this advantage is affected by the presence of congestion.

4 We acknowledge the existence of counterexamples that show bundling generates less revenue than a
la carte pricing for zero-marginal-cost goods (see [21] for such an example). However, these examples
typically rely on the construction of somewhat peculiar valuation distributions, which are perhaps rare
pathological exceptions.
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Fig. 1 Tllustration of customer V2
strategies under a la carte pricing 1

%

Buy service 2 Buy both
only
cW, +p,
Not buy Buy (s:lrl\}/llce 1
— U3
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4 A la carte pricing

Under a la carte pricing, the firm sells each congested service separately. Given price
pi and expected delay W; at facility i, each arriving customer with valuation v; for
service i purchases the service if and only if her expected utility from purchasing (the
valuation of the service less the expected delay costs less the price) is nonnegative,
ie.,

vi —cW; —p; > 0.

At facility i, there exists a cutoff value 6; such that a customer purchases the
service if and only if her valuation v; (weakly) exceeds 6;, where 6; = p; + cW;,
i.e., a customer with valuation 6; expects zero utility from purchasing the service.
Figure 1 illustrates customer strategies (the mapping from customer valuations to
their purchasing actions).

Based on the preceding argument, given (p;, W;), the effective (Poisson) arrival
rate for facility i is A; £ AF(6;), which, in turn, implies that the expected delay
is W, = W(%;), where W(r) £ 1 /(. — A) is the expected delay (including time
in service) of an M /M /1 queue with service rate ;1 and effective arrival rate 1.> In
equilibrium, 6; and W; must be consistent such that 6; solves the fixed-point equation
6; = cW(AF (6;)) + p; under p; of interest.® Hence, we can recast the firm’s a
la carte pricing problem to maximize revenue Z%:l A p; over prices (p1, p2) as an
optimization problem over cutoff values (61, 6»):

5 Recall from Sect. 3 that the underlying queueing system is a Kelly network, in which each queue operates
in steady state as if it were a standalone M /M /1 queue.

6 Itis straightforward that 6; must exist and is unique for any positive p; € [v—cW (A), v]. Any p; outside
this range cannot be optimal.
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2
R = max ; AF(0;)(6; — cW(AF(6))).

Thus, our a la carte pricing problem essentially boils down to the pay-per-use case
in Cachon and Feldman [11] (with some minor cosmetic changes). Since the two
services are symmetric, we use p4 to denote the optimal price for each service, and
0 the corresponding (optimal) cutoff value. Adapted from Cachon and Feldman [11,
Theorem 1], Proposition 1 characterizes the optimal a la carte price.

Proposition 1 Assume F has a non-decreasing hazard rate,” i.e., f(v)/F(v) is non-
decreasing in v. Under a la carte pricing, the optimal cutoff value 0 uniquely solves

2 - IoAE F(6)
0 = cW(AF(©) +cAFOW(AF©) + o,

and the optimal price p4 for each service is

pa =0 —cW(AF(@®)).

5 Bundle pricing

Under bundle pricing, the firm sells the two congested services as a bundle which
grants purchasing customers access to both facilities.

Given bundle price pp and expected delays W; for service i, a customer with valua-
tions (v, v2) decides whether to purchase the bundle in the first stage and conditional
on purchase, whether to visit each facility in the second stage. She purchases the bun-
dle in the first stage if and only if her expected utility of doing so is nonnegative,
ie.,

(1 — WDt + (2 —cWa)t — pp > 0. (1

Figure 2 illustrates two possible scenarios of customer segmentation in terms of
their strategies.® When ¢W; 4 pg > ©, customers either make no purchase or purchase
and visit both facilities, as specified in Fig. 2b; therefore, the demand rate for the bundle
coincides with the effective arrival rate of each facility. The case of cW; + pg < v is
more involved and four customer segments emerge, as specified in Fig. 2a. Specifically,
itis possible for customers to purchase the bundle but use only one service and forgo the
other; this happens when their valuation of the other service is too low to compensate

7 To guarantee the first-order condition of 6 to be sufficient for optimality, a non-decreasing hazard rate is
required of the valuation distribution, a property that holds for a wide range of distributions (e.g., uniform,
normal, exponential and Erlang). Note that if this property is not obeyed, the first-order condition would
still be necessary, but may be satisfied by multiple 0’s.

8 Other scenarios of customer segmentation would lead to asymmetric effective arrival rates of the two
facilities and cannot be sustained in equilibrium. We rigorously prove this result in Proposition 2.
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Fig.2 Illustration of customer strategies under bundle pricing

for the delay cost that would otherwise accrue. As a result, in this scenario, the demand
rate for the bundle is strictly larger than the effective arrival rate of each facility. This
is a unique feature that arises in congested service systems.

Next, we formally characterize the effective arrival rate for each facility under a
given bundle price pp and expected delays W £ (W, W,). For service i, we use
3 — i to index the other service, i = 1,2. Let S;(v3—;, W, pg) denote a threshold
on customer valuation of service i as a function of customer valuation v3_; for the
other service, given expected delays W and bundle price pg, such that a customer with
valuation v3_; for service 3 — i purchases the bundle and visits facility i if and only
if her valuation of service i satisfies v; > S;(v3—;, W, pp). Since customers purchase
the bundle if (1) holds and further visits facility i if v; > c¢W;, we have

cWi + ps ifv3—; <cWs,
Si(v3—i, W, pp) = 1 ¢ Z?:l Wi+ ps—v3 ifvs; € (cWs;,cWs; + pgl,
cW; otherwise.

Given (W, pp), the effective arrival rate for facility i, denoted by A;, is determined by

v
Ai = A/ F(Si(v3—i, W, pg))dF(v3—;), i=12. (2)
v

On the other hand, given the effective arrival rate A; for facility i, the expected delay
W; is, in turn, determined by W; = W (4;) = 1/( — ;). Inequilibrium, A £ (A, A2)
and W must be consistent such that A solves a system of two fixed-point equations in
(2) with (W1, W) replaced by (W (r1), W(A2)).

For a given bundle price pg, it is unclear a priori whether an equilibrium character-
ized by the fixed-point A uniquely exists. Nor is it obvious whether the two facilities
always enjoy the same effective arrival rate in equilibrium. Proposition 2 provides
affirmative answers to these questions.
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Proposition 2 Given any bundle price pp, there exists a unique equilibrium (L1, 1),
and the unique equilibrium induces a symmetric effective arrival rate, i.e., A\ = Ay =
A

Since the equilibrium is always symmetric, we can substantially simplify the for-
mulation. We rewrite (2) (with (W1, W) replaced by (W (1), W(X))) more explicitly
as

cW(R)+ps

A=AF (W) + pp) + A/ FQcWQO) + pg —v)dF@). (3
cW()

Let A(pg) be the A that solves (3) for any bundle price pg, whose existence and
uniqueness are justified by Proposition 2. Thus, the demand rate for the bundle (or the
rate at which customers purchase the bundle) is the effective arrival rate of customers
who visit one facility (and possibly visit the other) plus those who visit the other
facility only:

D(p) = A(pB) + AF (cW(A(pB))) F (¢W(.(pB)) + PB) - “)

The firm selects bundle price pp to maximize its revenue:
Rg £ max peD(pB). (%)

We can explicitly write Rg = max{Rp. 1, Rp2}, where Rp | and Rp > are defined
in Problems 1 and 2, respectively.

Problem 1 (¢W + pp < v, illustrated in Fig. 2a).

_ pPBH+eW _
Rp1 2 max Apg | F(cW + pp)(1+ F(cW)) +/ FQ2cW + pg — v)dF(v) |,
rB.W cW
1

A [F(CW +pp) + [PBYW Few + pg — v)dF(v)]
<.

st. W=
w—

(6)

pB +cW
Problem 2 (¢W + pp > v, illustrated in Fig. 2b)

Rpa2 = max ApgG(cW + pg/2),
rB.W

1
W - = ]
u—AG(W + pg/2)

S.t. pB +cW > v,

where G denotes the complementary CDF (G = 1 — G being the CDF and g being
the density) of customers’ average valuation of the two services (v + v2)/2:

G(z) = f F(2z —v)dF(v).
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Fig.3 Revenue comparison 1.4
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Appendix A gives an explicit formulation of the bundle pricing problem when
customer valuations are uniformly distributed.’

6 Comparison between A la carte and bundle pricing

This section compares bundle pricing and a la carte pricing in terms of their revenue
performance, their price, operational and welfare implications.

Theorem 1 identifies conditions under which one pricing scheme outperforms the
other in revenue. Following the convention of the bundling literature (see, e.g., [21]),
we restrict attention to symmetric and log-concave distributions.'”

Theorem 1 (Revenue Comparison)

1. Suppose that the probability density function f of customer valuation is symmetric
and log-concave. A la carte pricing generates more revenue than bundle pricing,
i.e., Ry > Rp, if potential arrival rate A is sufficiently high.

2. Suppose that customer valuation is uniformly distributed over [0, 1]. Bundle pric-
ing generates more revenue than a la carte pricing, i.e., R4 < Rp, if A < 2 and
delay sensitivity c is sufficiently low.

The results of Theorem 1 are supplemented in Fig. 3. Together, they show the
following. Under a low potential arrival rate relative to capacity and low delay sen-
sitivity relative to service valuations, bundle pricing indeed outperforms a la carte
pricing, echoing with the existing theory (cf. the benchmark case in Sect. 3.1). As the

9 In the reminder of the paper, with the exception of Theorem 1-(1), all the other analytical and numerical
results are established under a uniform valuation distribution unless otherwise specified.

10 1t follows from Bagnoli and Bergstrom [6] that log-concavity of probability density functions implies
an increasing hazard rate as required by Proposition 1.
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potential arrival rate gets high or customers get more delay-sensitive, however, bun-
dle pricing becomes inferior to a la carte pricing, contrasting the benchmark setting
without congestion. Somewhat strikingly, regardless of how favorable bundling can
be in a setting without congestion, Theorem 1 shows that a sufficiently high potential
arrival rate (relative to capacity) would always negate the revenue advantage of bundle
pricing.!!

Why does the presence of congestion undermine the relative appeal of bundle
pricing? Recall from our discussion in Sect. 3.1 that reduced customer heterogeneity in
valuations is key to the success of bundle pricing in a non-congested setting. However,
when the congestion effect is considerable (either because customers are highly delay-
sensitive relative to their valuation of the services or because the services are vastly
popular relative to the capacity available), purchasing customers must incur sizable
delay costs, which implies only customers with very high valuation of the bundle
would purchase the bundle. Nevertheless, demand from these customers is likely to be
too thin to retain the revenue superiority that bundling would otherwise enjoy, because
most customers only have a moderate valuation of the bundle despite potential high
valuation of an individual service. To that end, the driving force for the success of
bundling in settings without congestion—reduced customer heterogeneity—is exactly
what defeats bundling in settings with congestion.

Our results provide a potential explanation for the different pricing strategies amuse-
ment parks adopt. On the one hand, major amusement parks have a stronger brand
name, potentially making its perceived value of service significantly higher than that
of local parks. On the other hand, major amusement parks tend to offer waiting-area
entertainment [44], which reduce the perceived cost of waiting as “occupied time feels
shorter than unoccupied time” [33]. These effects combined imply that customers may
be less delay-sensitive relative to their valuation of service at major amusement parks
than at local ones. Therefore, major parks may prefer bundle pricing, whereas local
parks may prefer a la carte pricing.

If we take a broader view of our results, the delay cost incurred by customers can be
interpreted as an implicit “marginal cost” the firm must bear in serving each customer,
even in the absence of any explicit marginal cost. It is well recognized in the bundling
literature [1, 21, 40] that a high marginal cost hurts the profitability of bundling. In
particular, Adams and Yellen [1] argue that a high marginal cost weakens bundle
pricing by forcing it to violate the Exclusion principle, which advises the firm not to
sell a good to customers who value it less than its marginal cost. A firm that implements
bundle pricing may find it difficult to follow this principle because bundling hinges
on the transfer of customer surplus between goods [42]. Given the analog between

T We remark that the analytical results of the comparison in Theorem 1 are not exhaustive and that

the analysis of the intermediate cases is numerical. Moreover, while part (1) of Theorem 1 is established
under general valuation distributions, part (2) of Theorem 1 requires the assumption of a uniform valuation
distribution.

12 Note that amusement parks can differ along multiple dimensions. Even though major amusement parks
may have a higher potential arrival rate (relative to capacity) than local ones, the former may still prefer
bundle pricing (and the latter, a la carte pricing) if the former’s cost of waiting (relative to valuation of
service) is much lower than the latter’s.
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marginal costs of goods and delay costs in services, our findings are aligned squarely
with the bundling literature.

Despite this similarity, there is one key distinction: Marginal costs of goods are
exogenously specified, whereas delay costs in services are endogenously determined
as an equilibrium outcome. This distinction has the following two ramifications:

Property 1 Unlike the marginal cost, the delay cost is directly borne by customers
and passed on to the firm. As such, it is within the control of customers.
Indeed, customers who purchase the bundle may forgo one service in
equilibrium, thereby avoiding the corresponding delay cost.

Property 2 Unlike the marginal cost, the delay cost can be regulated by the firm’s
price. A high price would deter customers and reduce delay for those
who join (see Proposition 4 for a price comparison). Thus, the amount of
congestion generated (or how much the system is being utilized) varies
with the pricing scheme adopted (see Proposition 5 for a utilization
comparison).

6.1 Relative revenue difference

The results we have established so far speak to the direction of the revenue difference,
but are silent on its magnitude. In this subsection, we explore this question and study
the relative revenue difference between the two pricing schemes, A, defined by

éRA_RB
B

A x 100%,

where Rp and Ry are the optimal bundle revenue and a la carte revenue, respectively.
Proposition 3 characterizes how potential arrival rate A impacts the relative revenue
difference A.

Proposition 3 Suppose that customer valuation is uniformly distributed over [0, 1].
The relative revenue difference between bundle pricing and a la carte pricing, A, is
not monotone increasing in A. In particular, imp_, o, A(A) = 0.

While Theorem 1 suggests that under a sufficiently high potential arrival rate,
bundle pricing falls short of a la carte pricing in revenue, Proposition 3 shows that the
revenue gap between the two schemes does not always widen as the potential arrival
rate increases; on the contrary, the revenue gap closes as the potential arrival rate tends
to infinity. Here is the rationale. If the potential arrival rate is very high, the system
becomes very congested, and only those with very high valuation will buy. Due to
the capacity constraint, the volume of customers served by each facility approach a
common limit and become largely invariant to the underlying pricing scheme adopted.
Therefore, the revenues of the two schemes are almost identical to each other.

We supplement Proposition 3 with Fig. 4, from which we make the following
two observations. First, when the potential arrival rate or delay sensitivity gets suf-
ficiently high, while bundle pricing is less lucrative than a la carte (which echoes
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Fig. 4 Relative revenue difference between bundle pricing and a la carte pricing. Customer valuation
uniformly distributed over [0, 1], = 1; A = (RA — Rp)/Rp x 100%

with Theorem 1 and Fig. 3), the relative revenue gap diminishes. Second, the rela-
tive revenue difference is non-monotone in either the potential arrival rate or delay
sensitivity (specifically, an inverse U-shaped relationship is observed); the revenue
performance of bundle pricing relative to a la carte is the worst when the potential
arrival rate or delay sensitivity is intermediate. Under such circumstances, a la carte
pricing can beat bundle pricing by a sizable amount (over 40% in some instances). This
non-monotonicity behavior runs counter to the prediction from the product bundling
literature, which would suggest (see Appendix C) that under a uniform valuation dis-
tribution, the relative revenue difference is monotone in the (exogenous) marginal cost
of production (i.e., the percentage revenue loss from suboptimally choosing bundle
pricing increases with the marginal cost).

The implication from the above finding is that choosing the right pricing scheme
may be most economically consequential when the potential arrival rate or delay sen-
sitivity is intermediate. When the potential arrival rate or delay sensitivity is high,
nevertheless, mis-specifying the pricing scheme—i.e., adopting bundle pricing as
opposed to the optimal a la carte pricing—does not necessarily incur a huge (per-
centage) revenue loss. Therefore, the firm may still prefer bundle pricing under those
circumstances due to its simplicity (e.g., setting up one ticket booth to sell a single
ticket).

6.2 Other comparisons

In this subsection, we study the impact of bundling on price, system utilization, total
visits, consumer surplus and social welfare.
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Fig.5 Price comparison between a la carte and bundle pricing. Customer valuation uniformly distributed
over[0,1], u =1

6.2.1 Price comparison

Proposition 4 conducts a price comparison.

Proposition 4 (Price Comparison) Suppose that customer valuation is uniformly dis-
tributed over [0, 1]. If A is sufficiently small or sufficiently large, then pp < 2pa.
Moreover, limp o pp(A)/pa(A) = 2.

Proposition 4 compares the optimal bundle price pp and the optimal a la carte price
pa. (The total price of visiting both facilities is 2pa.) Recall from Sect. 3.1 that in
product bundling without congestion, bundle pricing is a volume strategy relative to
a la crate pricing in the sense that it sets a lower total price (i.e., pg < 2pa). We
analytically confirm in Proposition 4 that this relationship continues to hold in our
queueing setting under either a high or a low potential arrival rate and numerically
confirm it for an intermediate potential arrival rate; see Fig. Sc. This resultis consistent
with the anecdotal evidence that bundling offers a price discount. Further, since the
two pricing schemes achieve almost identical revenue when the potential arrival rate
is sufficiently high (see Proposition 3), the total prices of the two schemes are also
approximately equal in this case.

Figure 5 supplements Proposition 4 and generates additional insights. We observe
that while the a la carte price is increasing in the potential arrival rate (Fig. 5a), the
bundle price is non-monotone (Fig. 5b), and as a result, for some intermediate potential
arrival rate, the optimal bundle price can be even lower than the optimal (single) a la
carte price (Fig. 5c).

When the potential arrival rate is not too high, it is best for bundle pricing to capture
a large variety of customer types, including those who purchase the bundle but only
visit one facility (illustrated in Fig. 2a). When the potential arrival rate increases
in this regime, the service provider may have to cut the bundle price so as to retain
those customers despite the increased congestion. Hence, the optimal bundle price
may sometimes fall below the optimal a la carte price. However, when the potential
arrival rate goes beyond a certain point, it would be optimal for bundle pricing to tame
congestion and only target customers with high valuations of both services (illustrated
in Fig. 2b) while pricing out those who value only one service but not so much the
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Fig.6 Utilization comparison 3.0
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other. Therefore, the firm raises the optimal bundle price. Altogether, these results
collectively show the subtleties in the price implications of bundling.

6.2.2 Utilization comparison

The optimal prices have direct implications for capacity utilization, which we study
next. Let A4 and Ap be the effective arrival rate to a facility13 under a la carte and
bundle pricing (with the prices optimally chosen), respectively. Let u 4 and u p denote
the equilibrium capacity utilization under a la carte and bundle pricing, respectively.
Then, ug = Aa/1L, up = Ap/NL.

Proposition 5 (Utilization Comparison) Suppose that customer valuation is uniformly
distributed over [0, 1]. If A is sufficiently small, up > w4, if A is sufficiently large,
up < Up.

Capacity utilization is associated with the amount of congestion at each facility, and
consequently, the implicit marginal cost incurred by the firm (as discussed earlier).
Proposition 5 confirms Property 2 that the amount of congestion in the system varies
with the pricing scheme adopted. As stated above, when the potential arrival rate is
low, bundling works as a volume strategy that attracts more customers to the system
and hence results in higher capacity utilization. By contrast, when the potential arrival
rate is high, the reverse is true. In this case, the firm has an incentive to charge a
relatively high price to tame congestion. Yet, as explained earlier, there is a thinner
demand for the bundle as only customers who have high valuations for both services
will visit. This causes capacity utilization to be lower under bundle pricing.

13 It suffices to track one facility due to the symmetry between the two services.
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Figure 6 supplements Proposition 5. Not only does it confirm the theoretical pre-
scription from Proposition 5, it also indicates that when the potential arrival rate A is
high, bundling leads to higher capacity utilization when delay sensitivity c is either low
or high, but results in lower utilization when delay sensitivity is intermediate. Note that
the utilization comparison is equivalent to the facility-level throughput comparison.
Specifically, if we are interested in how bundling affects the number of customer vis-
its per unit time (i.e., throughput) at each facility, this will follow immediately from
the utilization comparison, because the throughput is equal to the utilization times
capacity u (which is fixed in our main model).

6.2.3 Total visits comparison

Another relevant metric is the (system-level) total visits per unit time, i.e., the total
number of unique customers who visit the system per unit time. Note that this service-
level metric differs from the aforementioned facility-level throughput, because a
customer who visits the system may visit both facilities or only one of them, and
in the latter case, does not contribute to the throughput of the facility that she does not
visit. Formally, under a la carte pricing, the total visits per unit time are the number of
unique customers who purchase at least one service per unit time, i.e.,

TVa = A(l — F%(6)),

where the cutoff value 6 follows from Proposition 1. Under bundle pricing, the total
visits per unit time are the number of customers who purchase the bundle per unit
time, i.e.,

TV = D(pp),

where D(pg) defined in (4) is the per-unit-time demand for the bundle under price
pB. We observe from our extensive numerical study that under a uniform valuation
distribution, TVp < T V4 across the board, i.e., bundling always decreases the total
visits per unit time. Note that this observation is in line with the utilization comparison
(and equivalently, the facility-level throughput comparison) in Sect. 6.2.2 when A is
high, but runs counter to the utilization comparison when A is low. In the latter case,
under low A, while bundling increases utilization at each service facility, it decreases
the number of unique customers who visit the entire service system. In such a case,
as noted in Sect. 6.2.1, the bundle price is less than the sum of the a la carte prices
across facilities but still higher than the standalone a la carte price at each facility.
Hence, bundling can be less attractive to customers who value one service but not the
other, yet more attractive to customers who value both services. The former effect
can outweigh the latter effect, causing the total visits per unit time to decrease when
services are sold in a bundle.

@ Springer



29  Page 20 of 45 Queueing Systems (2025) 109:29

=01

(a) A la carte pricing (b) Bundle pricing (¢) Consumer surplus ratio

Fig.7 Consumer surplus comparison between a la carte and bundle pricing. Customer valuation uniformly
distributed over [0, 1], u =1

6.2.4 Consumer surplus comparison

Next, we examine how bundling impacts consumer surplus. Let CSa and C Sg denote
the consumer surplus under the optimal a la carte and bundle pricing, respectively.
Then,

CSa =2A /U[v — cW(AF(©®)) — paldF (v),
0

where the cutoff value 6 and optimal a la carte price pa follow from Proposition 1,
and

CSp = A / f ([vr — W) + [v2 — eWO(pe)TF — p}HdF(0)dF (),

where the optimal bundle price pp and the effective arrival rate A(pp) follow from (5)
and (3), respectively.

Proposition 6 (Consumer Surplus Comparison) Suppose that customer valuation is
uniformly distributed over [0, 1]. If A is sufficiently small or sufficiently large, then
CSs < CSp. Moreover, limp 00 CSp(A)/CSs(A) = o0.

Proposition 6 shows that bundling results in higher consumer surplus when the
potential arrival rate is either low or high. Recall from Theorem 1 that when the
potential arrival rate and delay sensitivity are low, bundle pricing also achieves a
higher revenue. Thus, in this case, bundling leads to a win—win outcome for both the
service provider and customers. We further observe from Fig. 7c that under a broad
range of conditions (beyond the ones analytically identified in Proposition 6), bundling
leads to higher consumer surplus, but there are exceptions. Specifically, when delay
sensitivity is relatively low and the potential arrival rate is intermediate, bundling may
lead to lower consumer surplus (which is partially attributed to heavy congestion under
bundling). We also observe from Fig. 7a and b that consumer surplus under either
pricing scheme is non-monotone in the potential arrival rate. To see why, note that on
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the one hand, a high potential arrival rate implies more customers can benefit from
the services; on the other hand, it also implies that the system will be more congested,
potentially hurting the interest of each individual customer.

When the potential arrival rate gets sufficiently high, while the two pricing schemes
resemble each other from the perspective of the service provider (both in terms of
revenue and price; see Propositions 3 and 4), they (surprisingly) diverge in their impact
on customers. Proposition 6 analytically shows that the consumer surplus ratio of
bundle pricing to a la carte pricing tends to infinity as the potential arrival rate goes
to infinity; Fig. 7c numerically shows that this ratio increases as the potential arrival
rate gets sufficiently high. In this case, due to the capacity constraint, the volume of
customers who use each service is similar (see the discussion after Proposition 3), but
the composition of customers is markedly different. A la carte pricing sells to those
with high valuation of at least one service, including those who do not value the other
service much (see Fig. 1). By contrast, bundle pricing only sells to customers who
have high valuation of both services (see Fig. 2b). Therefore, even though the volume
of customers who obtain the services is almost the same between the two schemes,
bundle pricing is better at allocating the services to those who value them the most,
and hence generates more consumer surplus.

6.2.5 Social welfare comparison

Finally, we compare social welfare, defined as the sum of consumer surplus and firm
revenue. Let SWx and SWg denote the social welfare under a la carte and bundling,
respectively. Then,

SWa =CSa+ Ra, SWp =CSp+ Rp.
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We observe from Fig. 8 that bundling increases social welfare when the potential
arrival rate A is low, but reduces social welfare when A is high. When A is low,
bundling increases both consumer surplus (according to Proposition 6) and firm rev-
enue (according to Theorem 1) and hence increases social welfare. However, when A
is high, the impact of bundling on consumer surplus diverges from that on firm revenue.
In such a case, while bundling continues to improve consumer surplus (according to
Proposition 6), it reduces firm revenue (according to Theorem 1); thus, it is not entirely
clear how bundling will impact social welfare. We show in the proof of Proposition 6
that as A tends to infinity, consumer surplus tends to zero under both pricing schemes
due to excessive congestion. We also show in the proof of Theorem 1 that as A tends to
infinity, firm revenue converges a positive constant under both pricing schemes. Thus,
as A gets large, firm revenue predominates in social welfare, dwarfing the impact of
consumer surplus. This suggests that the social welfare comparison largely follows
from the revenue comparison in Theorem 1.

6.3 Discussion: comparison with subscription pricing

Since bundle pricing is closely related to subscription pricing, we discuss key differ-
ences in the economic and operational characteristics of these two pricing schemes.
To focus our discussion, we will specifically contrast our model setup and results with
those of subscription pricing as studied by the base model in Cachon and Feldman
[11].

One defining feature of subscription pricing in Cachon and Feldman [11] is that
customers do not know their realized valuations of future visits and are homogeneous
when deciding whether to subscribe (provided that they have the same usage rate).
By contrast, in our model of bundle pricing, consistent with the bundling literature,
customers know their individual valuations of each service and are already heteroge-
neous before purchasing the bundle. As a result, our model generates notably different
insights.!#

e First, in terms of revenue comparison, if the potential arrival rate to the queue is
low enough, then subscription pricing is always more lucrative than pay-per-use.
By contrast, we numerically find that for any fixed potential arrival rate (that can
be arbitrarily low), bundling is dominated by a la carte pricing in revenue as long
as customers’ delay sensitivity is sufficiently high (see Fig. 3). Hence, a high
potential arrival rate is not necessary for bundling to fall short.

e Second, the relative revenue difference between subscription pricing and pay-per-
use is monotone in the potential arrival rate (see Fig. 12c in Appendix D), but the
relative revenue difference between bundle pricing and a la carte pricing is non-
monotone. Specifically, when the potential arrival rate is sufficiently high, bundle
pricing generates similar revenue to a la carte pricing, but subscription pricing
severely falls short of pay-per-use. In fact, the revenue of subscription pricing
diminishes to zero as the potential arrival rate gets sufficiently high.

14 The insights mentioned below regarding the comparison between subscription pricing and pay-per-use
are all based on Cachon and Feldman [11]. To be self-contained, we provide more details of their model in
Appendix D.
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Fig. 9 Illustration of two additional cases of customer strategies under bundle pricing when the customer
population has asymmetric valuations

e Third, subscription pricing lacks the ability to regulate congestion in the sense that
the equilibrium capacity utilization under subscription pricing is always higher
than that under pay-per-use. By contrast, the equilibrium capacity utilization under
bundle pricing can be higher or lower than that under a la carte pricing (depending
on the model primitives).

e Fourth, as for consumer surplus, subscription pricing can extract all consumer sur-
plus ex ante, whereas pay-per-use generates positive surplus. Hence, subscription
pricing always leads to lower consumer surplus than pay-per-use. By contrast,
bundle pricing often generates higher consumer surplus and can create a win—win
situation for the service provider and customers alike.

These differences imply that we cannot directly apply the insights from the com-
parison of subscription pricing and pay-per-use to the evaluation of bundle pricing
vis-a-vis a la carte in our setting.

7 Extensions

In this section, we consider three extensions, namely asymmetric valuations, asym-
metric capacities and endogenous capacities. Each extension changes one assumption
of the base model at a time, while keeping all the other assumptions unchanged.

7.1 Asymmetric valuations

We assume that customer valuation of service 1 is uniformly distributed over [0, 1],
whereas that of service 2 is uniformly distributed over [0, v] with v € (0, 1). This
captures an asymmetric scenario in which one service (service 1) is more popular than
the other on average.

Our analysis starts with reexamination of customer segmentation. Recall from Fig. 2
that bundle pricing could lead to two cases of customer segmentation under symmetric
valuations: a case of four segments as illustrated in Fig. 2a and a case of two segments
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Fig. 10 Revenue comparison when the two services are asymmetric. £ = 1. In panel (a), both facilities
have capacity p; the customer valuation distributions for service 1 and service 2 are U(0, 1) and U (0, v),
respectively. In panel (b), the customer valuation distribution for both services is U (0, 1); the capacities of
facility 1 and facility 2 are u and S, respectively

as illustrated in Fig. 2b. Under asymmetric valuations, however, two additional cases
(besides the aforementioned two) might arise. Figure 9a illustrates a case in which
customers are divided into three segments in terms of their strategies, i.e., those who
do not buy, those who buy the bundle and visit both facilities and those who buy the
bundle and visit facility 1 only. Figure 9b illustrates a case in which customers are
divided into two segments in terms of their strategies: They either do not buy or buy
and visit facility 1 only. This case occurs if v < ¢/pu, i.e., all customers have such
low valuation of service 2 that nobody visits facility 2 even if it is empty. Obviously,
this case reduces to a la carte pricing. Based on these cases of customer segmentation,
Appendix A.2. presents an explicit formulation of the a la carte and bundle pricing
problems.

We conduct a numerical study of the revenue comparison. Figure 10a encapsulates
our numerical results. We observe that as the less popular service gets even less pop-
ular, i.e., as v decreases, the parameter space in which a la carte pricing dominates
bundle pricing expands (the separating curve shifts left/down). On the one hand, this
observation shows that an increased asymmetry makes bundling less favorable rela-
tive to a la carte. On the other hand, this observation also resonates with our earlier
finding that high delay sensitivity harms the superiority of bundle pricing over a la
carte pricing. With lower popularity of service 2, customers’ delay cost appears higher
by comparison, and the congestion effect becomes more considerable. Therefore, as
explained earlier, the advantage of bundle pricing dwindles.
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7.2 Asymmetric capacities

In the base model, we assume the two service facilities have equal capacity. In this
subsection, we consider capacity asymmetry across the facilities. Specifically, we let
the capacity of facility 1 be u, and that of facility 2, §u, § € (0, 1). Appendix A.3
gives an explicit formulation of the a la carte and bundle pricing problems under
asymmetric capacities when customer valuation is uniformly distributed over [0, 1]
at both facilities. We conduct a numerical study of the revenue comparison. Figure
10b encapsulates our numerical results. We observe that as the small-capacity facility
further decreases in capacity, i.e., as § decreases, the parameter space in which a la
carte pricing dominates bundle pricing expands (the separating curve shifts left/down).
This observation echoes with our earlier finding that a high potential arrival rate harms
the superiority of bundle pricing over a la carte pricing. With smaller capacity at one
facility, the potential arrival rate seems higher, and the congestion effect becomes more
considerable, which, as explained earlier, weakens the revenue advantage of bundle
pricing.

7.3 Endogenous capacities

In the base model, we assume the capacities of the service facilities are exogenously
given and do not vary with the underlying pricing scheme. In the long run, capacity
may also be adjusted in conjunction with the pricing scheme adopted. We consider
such an extension in this subsection. Specifically, we assume that the firm incurs a cost
ku per unit time for maintaining capacity p at each facility, and unit capacity cost k
measures how difficult it is to scale capacity. Thus, if both facilities operate at capacity
W, the total capacity cost per unit time is 2k . For a given pricing scheme (a la carte or
bundle pricing), the firm chooses both the capacity and price(s) to maximize its total
profit rate. Since the two facilities are symmetric in other dimensions, we focus on the
case in which the firm allocates the same amount of capacity to each facility.

Let ua(c) and ug(c) be the optimal capacity under delay sensitivity ¢ for a la carte
and bundle pricing, respectively. Further, we denote the following limiting capacities:
up(0) = lim,—o up(c) and pua(0) = lim._o pna(c). Proposition 7 compares the
firm’s optimal capacity choice (in the limit) under the two pricing schemes.

Proposition 7 If customer valuation is uniformly distributed over [0, 1], then up(0) >
ua(0) whenk < 7/16; up(0) < ua(0) when k € [7/16, 1).

Proposition 7 shows that when customers are delay-insensitive (which makes sharp
analytical comparison possible), then bundle pricing entails a larger capacity than a la
carte pricing if the capacity cost is low, but a smaller capacity if the capacity cost is
relatively high; if capacity cost is too high, then neither pricing scheme is profitable.
This insight continues to hold numerically when customers are mildly delay-sensitive,
as demonstrated in Table 2a. The intuition is similar to that behind the utilization
comparison for fixed capacity in Sect. 6.2.2. When maintaining capacity is cheap,
the firm will choose a large capacity under either pricing scheme, which implies low
system congestion. Therefore, as explained before, the firm practicing bundle pricing
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Table2 Profit and capacity comparison between a la carte and bundle pricing when capacity is endogenized

Capacity cost k 0.005 0.05 0.1 0.2 0.3 0.4 0.45
(a) ¢ = 0.005

A la carte profit IT4 0.481 0.408 0.346 0.241 0.156 0.086 0.056
Bundle profit I1g 0.521 0.429 0.349 0.213 0.106 0.034 0.010
A la carte capacity pa 1.197 0.679 0.580 0.471 0.388 0.312 0.275
Bundle capacity g 1.469 0.870 0.754 0.617 0.436 0.281 0.211
Profit ratio I1p /IT4 108.4% 105.3% 101.0% 88.1% 67.9% 40.0% 17.2%
Capacity ratio g /ia 122.7% 128.1% 129.9% 131.1% 112.4% 90.0% 76.6%
Capacity cost k 0.005 0.05 0.1 0.2 0.23
(b) ¢ =0.05

A la carte profit I 4 0.451 0.316 0.221 0.081 0.048
Bundle profit [T 0.487 0.326 0.210 0.040 0.000
A la carte capacity pa 2.691 1.098 0.837 0.589 0.533
Bundle capacity up 3.173 1.328 1.020 0.709 0.632
Profit ratio ITp /TT4 108.0% 103.1% 95.1% 49.4% 0.0%
Capacity ratio g /pa 117.9% 120.9% 121.8% 120.4% 118.6%

Note. Customer valuation uniformly distributed over [0, 1], A = 1

has a revenue advantage and has a stronger incentive to embrace a volume strategy
by building a larger capacity to lure more customers. By contrast, when maintaining
capacity is expensive, capacity level will naturally be set low under either pricing
scheme, leading to heavy congestion. As explained before, this implies that the firm
practicing bundle pricing faces less effective demand and consequently, maintains
less capacity. However, if delay sensitivity becomes a more prominent feature, as
demonstrated in Table 2-(b), the firm will make a profit under both schemes only
when the capacity cost is low, and therefore, in such a case, bundle pricing is always
associated with higher capacity investment.

In either case, nevertheless, we observe that bundle pricing is more profitable than
a la carte pricing if the capacity cost is relatively low, but less profitable if the capacity
cost is relatively high. This may provide yet another potential explanation for why
firms differ in bundling strategies in practice. It is plausible that major amusement
parks are more cost efficient than local amusement parks in scaling capacity. As a
consequence, the former may build larger capacity and implement bundle pricing,
whereas the latter may operate under smaller capacity and practice a la carte pricing
instead.

8 Conclusion and discussion

This paper studies bundle pricing for firms selling multiple congestion-prone ser-
vices. We find that when the potential arrival rate of customers is high relative to
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service capacity, or customers’ delay sensitivity is high relative to their service val-
uation, bundling will be less lucrative than a la carte pricing, even though customers
may benefit more from bundle pricing. Our analysis highlights the need for service
firms to adjust their pricing strategy as they improve branding (which increases cus-
tomer valuation), develop waiting-area entertainment (which decreases customers’
delay sensitivity) or expand capacity (which makes the potential arrival rate look less
overwhelming by comparison).

Next, we discuss some of our modeling assumptions, acknowledge the limitations
of our work and lay out future research directions. To begin with, various factors not
captured in our model might affect firms’ pricing strategies in practice. For example,
customer demand may fluctuate at different points of the year.'> While demand may
spike during holiday seasons (at which time a la carte pricing may be more favorable
according to our analysis), it might stay low for the rest of the year (at which time bundle
pricing may be more advisable). The service firm may find it difficult to constantly
change the pricing scheme and thus may stick to bundle pricing if it expects low
demand for most of the year and high demand only on a few special occasions.

While some of our key analytical results on revenue comparison are established
under fairly general valuations distributions (e.g., Theorem 1-(1)), other results assume
a uniform valuation distribution for tractability. Future research can examine how
to extend those results to more general distributions. Relatedly, one can consider
relaxing the assumption that customer valuations of different services are independent.
In addition, consistent with most of the bundling literature, our paper assumes strict
additivity of customer valuations, i.e., the gross valuation of all the services combined
is equal to the sum of the valuation of each service. Future research can incorporate
non-strict additivity of customer valuations, although doing so would significantly
complicate the model even without congestion (see, e.g., [22, 43]).

Moreover, we rule out by assumption any repeated visits to the same facility and
future research can study such a feedback-queue structure.

Finally, the two pricing schemes we study in this paper (a la carte and bundle
pricing) are subsumed by more complex pricing schemes such as mixed bundling [17]
or two-part tariffs [37]. In mixed bundling, customers have the choice between buying
individually priced services and buying them as a bundle at a discounted price. In a
two-part tariff, the firm first charges an admission fee at the front entrance and then a
second fee for actually using any of the services. We note that while these sophisticated
schemes generate more revenue (since they pull more levers of price discrimination),
firms in practice may nevertheless lean toward simple pricing schemes such as those
studied in our paper. Still, future research can investigate the theoretical properties of
those more complex pricing schemes.

In sum, our paper represents a first cut at investigating bundle pricing in a queueing
context. We hope it will invite more future research in this area.

15 Specifically, we envision two timescales. On a smaller timescale (e.g., within a week), customer demand
is largely invariant, but on a bigger timescale (e.g., from month to month), customer demand may fluctuate.
Customers may have a good idea of when demand jumps (e.g., in anticipation of a major holiday) and may
be able to figure out the expected delay for each small timescale.
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Appendix to “Bundle pricing of congested services”

Appendix A: Explicit formulation of pricing problems under uniform
valuation distribution

A.1. Symmetric valuations and capacities

We first formulate the bundle pricing problem assuming that customer valuation is
uniformly distributed over [0, 1] for both services and capacity is u for both services.
Case (a): cW + pp < 1. This corresponds to the case illustrated in Fig. 2a.
The effective arrival rate for each facility as a function of bundle price pg is

B

A (1—cW — pg)eW + (A=W — 5
NNl

=A<1—p]23/2—cW—chB).

the segment who visits only one facility the segment who visits both

1
n—A(l 7p123/27cW7chB) :
function of bundle price pg is

where W solves W = The demand rate for the bundle as a

ADU:—CW——deV+%l—CWQZ—ié/ﬂ::A(l—[%/Z—ZCWpB—chVa.

Hence, the revenue-maximization problem is

Problem 3

RB.1 £ max A pp (1 — p%/Z —2cWpp — c2W2) ,
PB
. 1
C p— A= p§/2—cW —cWpp)

S.t. pB+cW <1.

Case (b): pg + ¢W > 1. This corresponds to the case illustrated in Fig. 2b.
The effective arrival rate for each facility is equal to the demand rate of the bundle
and is equal to

ML%W—@W+@—DV_AQ—%W—WF
2 B 2 '

where W solves W =

1 I .
. AW Hence, the revenue-maximization problem
is

Problem 4

Rp & max Apg(2—2cW — pB)? /2.
B

1
W= ,
p—AQ—2cW — pp)?/2

S.t. 2—-2cW—-pg =0, pg+cW=>=1.
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The optimal bundle revenue is Rg = max{Rp 1, Rp 2}, where Rp 1 and Rp > are
obtained from solving Problems 3 and 4, respectively.

A.2. Asymmetric valuations
A.2.1. A La carte pricing

The optimal a la carte revenue Ry is:

Rp = A(l—e)[e < i|+A(l—9 ‘)[9 - < ] (A.1)
Ao VI i mRa e AR Ry vyl R
A.2.2. Bundling pricing
The optimal bundle revenue is Rg = max{Rp 1, Rp2, Rp 3, Rp 4}, where

Rp.1, Rp2, Rp 3, Rp 4 are defined in Problems 5 through 8, respectively.

Problem 5 (Four segments: visit both, visit 1 only, visit 2 only, not buy, as illustrated
in Fig. 2a)

_ 1 _
Rp,1 = max App [v — (cWy + pB)(cW2 + pB) + *P%} /v,
B, W1,W2 2
1
s.t. Wy = 5 ,
i= A5 = Wi+ pB)(Wa + pB) + 3 P} — (3 = p — cWa)eWi | /3
1
Wy = s

w—A [17 — (cW1 + pB)(cW2 + pp) + 5 p% — (1 — pg — CW1)CW2] /v

cWi+pg =<1, cWr+pp <o

Problem 6 (Three segments: buy and visit both, buy and visit 1 only, not buy, as
illustrated in Fig. 9a)

Rpa= max — Apg[o(l—cWi— pp)+ @ —cWn?/2] /3,
B, W1, Wa

1
pw—A[o(l —cWi = pp) + (0 —cWp)?/2] /v’
1
w—A[(l—cW| —(cWa+pg —0)+ 1 —cW| — pp)(¥ —cW2)/2] /v’
cWi+pg =1, cWo+pp=v, v=cWs

s.t. Wy =

Wy =
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Problem 7 (Two segments: buy and visit both, not buy, as illustrated in Fig. 2b)

Rps=max Apg(l+0—2cW — pp)*/(2D),
pB, W

1
w—A+0—2cW — pp)2/(2v)°
cWH+pg>1, cW <.

s.t. W=

Problem 8 (Two segments: buy and visit 1 only, not buy, as illustrated in Fig. 9b)

Rps=max App(l —cW — pp), s.t.
pB. W

1

W= ,
u— A1 —cW — pg)

cWH+pg<1, c¢/pu=n.

A.3. Asymmetric capacities
A.3.1.A La carte pricing

The optimal a la carte revenue Ry is:

c
Ra=max A(l—-0))|0— ——— [+ A(1—-6)) | — ——|.
A = max ( 1)[1 u—A(l—el)] ( 2)[2 SM—A(I—GQ)]
A.3.2. Bundling pricing
The optimal bundle revenue is Rg = max{Rp 1, Rp2, Rp 3, Rp 4}, where

Rp.1, R 2, Rp 3, Rp 4 are defined in Problems 9 through 12, respectively.

Problem 9 (Four segments: visit both, visit 1 only, visit 2 only, not buy)

1
Apg [1 — (cWy + pB)(cWa + pB) + Epé] ,
1

nw—A [1 — (cW1 + p)(cW + pB) + %P% —(-ps— CW2)CW1]
1

s — A [1= W1+ pR)(eWa + pp) + 5 p} — (1 = pg — cWi)eWs |

cWi+pg=s1l, cWo+pg=l

Rp 1= max
’ pB. W1, W2

s.t. Wy =

Wy =

’
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Problem 10 (Three segments: buy and visit both, buy and visit 1 only, not buy)

Rgo= max — Apg[(l—cWi—pp)+(1—cW?/2],
pB,W1,W2

1

s.t. Wy = IS
w—A[d—=cW = pp) + (1 — cWp)?/2]
1
Wy = R
Su—A[(1—cW —(cWo2+pg — 1) +1—cW| — pp)(1 —cW3)/2]
cWi+pg <1, cWo+pg=1, cWy<l.

Problem 11 (Two segments: buy and visit both, not buy)

Rp3= max App(2— Wi —cWa — pp)?/2.
B W1. W2

1 1
, W= ,
pw—AQR—cWi —cWy — pp)?/2 Sp— AR —cWy —cWa — pp)?/2
cWi+pg>1, cWo+pg>1, W <1, cWra<l

st. Wy =

Problem 12 (Two segments: buy and visit 1 only, not buy)

Rp4=max App(l —cW — pp), s.t
pB,W

1
W =
m— Al —cW — pp)

., cWHpg<1, ¢/(6u)=>1.

Appendix B: Proofs

Proof of Proposition 2 We first show there always exists a symmetric fixed point
(A1, A2) with A1 = Ay = A to the set of equations in (2). We next show that the
fixed point is unique. To show a symmetric fixed point exists, we need to show that
there exists A that satisfies A = A fvv F(S(v, W()), pp)dF (v), where

cW() if pp—(@—cWO)t <0,

S, W, pp) = pE— (W —cWONT +cWQ) if pp— (v —cWR)T > 0.

Define £ (1) £ A [ F(S(v, W()A), pg)dF (v) — A. One can easily verify that £ (1)
is decreasing in A. Further, £(0) > 0 and £(A) < 0. Hence, there exists a unique Ao
such that ¢ (Ag) = 0. Define A £ (rg, A), which is the unique symmetric fixed point.
We next show the symmetric fixed point is the only fixed point. Otherwise, suppose
there exists an asymmetric fixed point A = (A, A 4+ §). By the symmetry of the two

@ Springer



29 Page32of45 Queueing Systems (2025) 109:29

services, we can assume § > 0 without loss of generality. Thus,

A / F(S(wi, WA, WA +8), pp)dF(v)) = A+,

A/ F(S(v2, WA+ 8)), W), pp)dF(v2) = A.

v

Subtracting the second equation from the first gives

A [ [F(Sw, W), WA +8), pp)) — F(S(v, Wk +8), W), pp)]dF (v) = 6.

We compare S(vi, W(A), W(A + §), pp) and S(va, W(A + 8)), W(A), pp) in three
regionsZ) ={v:v < pp+cW)}, I ={v:pp+cWQ) <v < pp+cW(A+95)},
In={w:v>pp+cWh+9)}.

We rewrite S(vi, W(A), WA 4+ 6), pp) and S(va, WA + §)), W(X), pp) in the
three regions,

7 - S, W), W +6), pp) =min{pp —v+cWQA) +cWA +36), pp+cW(A+ )}
b S, WA +68), W(A), pp) =min{pg —v+cWQA) +cWAR+38), pp +cW(H)}
I - S, W), WL +6), pp) =cW(R +6)
2 S, WA +368), W(r), pg) =min{pg —v+cWQA)+cWA+39), pp+cW(, pp)}
In - S, W), W +6), pp) =cW(A +9)
3 S Wt 8), W, pp) = W)

S, W), W +9), pp) > S(v, WA +8)), W(A), pp) in Z1 and Z3. Also, notice
that the definition of Z, implies p — v + ¢W (1) < 0, or equivalently, cW (A + §) >
p—v+cWQ) 4+ cW( +9). It follows that

S, W), WO +8), pg) = cWA+8) = p—v+cWO) +cWO+6)
>min{p —v+cWQR)+cWA+8),p+cWH)} = S, W +68), W), pp)-

Hence, S(v, W(A), W(A + 8), pp) > S(v, WA + §), W(A), pp) for all v, which

leads to the following contradiction, § = Afvﬁ [F(S(v, W), W + 8), pp))

— F(S(v, WA +8)), W), p3)1|dF(v) < 0. Thus, no asymmetric fixed point can
exist, i.e., the symmetric fixed point is the only fixed point. O
Proof of Theorem 1 Part (1):

Step 1: We first show that in Problem 1, Rp; — 0 as A — oo. In case (a), for
any feasible pp such that cW + pg < v, the effective arrival rate for each facility
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isA = A [F(cw +pp) + [V FQeW + pp — v)dF(v)]. The stability of the

C
system requires A < (.
Further,

_ petcW
A=A |:F(CW + pB) + f FQ2cW + pg — U)dF(v)]

w

pBtcW
zA/ FQ2cW + pg —v)dF(v)
cW

r ppe+cW
=A / [F(pg +cW) — F(pg +2cW — v)]dF(v):|
cW

r rp+cW
>A / [F(pg +cW) — F(pg +2cW — v)]dF(v)i|
LJ pp/2+cW

r ppe+cW
A [ [F(pB+cw>—F(pB/2+cW>]dF(v)}
LJ pB/2+cW

=A(F(pp +cW) — F(pp/2 + cW))>.

The stability condition requires F(pg + cW) — F(p/2 +cW) — 0as A — oo,
which implies pg — 0. The bundle revenueis Rp 1 = pp (A—l—AF(cW—FpB)F(cW)).
Since A < wand AF(cW + pp)F(cW) < A < p, it follows that Rp.; < 2pppu. As
A — oo, pp — 0,thus Rp 1 — 0.

Haviv and Randhawa [26] (Lemma 1) show that under a la carte pricing, the max-
imum revenue does not diminish as A — 00, i.e., limp_. o Ra > 0. Hence, there
exists a finite threshold K such that Ry > Rp 1 for A > K.

Step 2: We next consider Problem B.1 as a relaxation problem of Problem 2.

Problem B.1

1
w—AG(W + pg/2)’

I%Bg £ max ApBC_;(cW + pp/2), st W=
rB.W

NoticeA that Problem 2 has one more constraint than Problem B.1, and therefore,
Rp> < Rp.

We shall show that there exists a threshold K, such that Ry > R g2 if A > K>.

We first state an auxiliary result in Lemma B.1, which follows from Ibragimov and
Walden [27, Proposition B.1].

LemmaB.1 If X| and X, are two i.i.d. random variables with a symmetric and log-
concave probability density, then P (# —o > x) <P(X1—a > x)forallx >0
andP(% —o > x) > P(X| —a > x) forall x < 0, where o = E[X] is the

mean of X1.

Recall that the firm’s maximum a la carte revenue can be expressed as Rp =
maxyg 2AP(V] > 0)(v — cW(AP(V] > 6))).
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Let 6p = c¢W + pp/2. Problem B.1 can be equivalently formulated as R B2 =
maxg, 2AP (W > 93> [93 —cW (AP (% > 93))] , where V|, Vh arei.i.d.

random variables following distribution F.

Any feasible 6p must satisfy APP( VHZ'VZ > 0p) < . In particular, if A > K, £

w/P (% > E[Vl]), then any feasible 6p must satisfy 6p > E[V]]. Given 63,

define va(63) 2 {v : AP (% > 93) — AP (V; > v)}. Since 65 > E[V;] when
A > Ky, Lemma B.1 implies v4 (0p) > 6p when A > K». Hence, when A > K>,

2AP(V1 > va(p)) [va(Op) — cW(AP(V1 > va(6B)))]

Vi 4V Vi 4V
= 2AP (% > 93) (uA(e)B) — W (A]P’ <% > (93)))
> 2AP <¥ > 93) (93 —cW (AIP’ <¥ > 93))) .

It follows that when A > K>,

Vi+V; Vi+V;
nél)ax 2A]P’< ! —; LIS 93> (93 —cW (A]P’( ! —; LIS 03)))
B

< max 2AP(V] > va)(va — cW(AP(V] > va))).
vA

In other words, Rp > 1%372 when A > K3. Since IéB,Z > Rp 2, it implies that Ry >
Rp 2 if A > K>. Since we have established in Step 1 that Ry > Rp | when A > K,
it further follows that R4 > Rp = max{Rp i, Rp2} if A > K3 £ max{Ki, K>},
which completes the proof of Part (1).

Part (2): We express the maximum a la carte revenue as a function of delay sensi-
tivity c:

c

Ra(c) =supRL(va,0) 22A(1 —v )(v -
Al =P latua AT AT v

) , ostopw> Al —vy).

We shall show lim._g Ra(c) = RR, where RR = sup,, Ri(vA) £ 2A(1 —
va4)va, S.t. u > A(l — vy). First, note that Ra(c) < Rg for all c¢. Hence,
limsup,._, g Ra(c) < Rg. Second, by definition of R, for any € > 0, there exists
U4 satisfying u > A(1 — 04) such that RZ‘(GA) > RR — €/2. Fix 04; consider
R3(©) 2 Rl c) = 2001 = 04) (94 — =xfr5 ) Let ¢ — 0, it holds that
R} (c) > R%(Da)—e/2 for sufficiently small c. Hence, R} (04, ¢) = R} (c) = R —e,
implying Ra(c) = sup,, RA(UA, c) > Rg — €. Since € is arbitrary, it follows that
liminf,_.o Ra(c) > Ra. We conclude that lim._.o Ra(c) = RY.
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We next solve Rg. If A < 2u, then Rg = A/2.If A > 2u, then the supremum
can be achieved by letting A(1 —v4) = p; RS = 2u[l — j1/A]. Hence,

A

0172 = (B.1)
2pul —p/N), A =2pu.

Similarly, the maximum bundle revenue Rp(c) as ¢ — 0 is lim._.g Rg(c) =

Rg = max{R%’], R%,z}’ where R%’l and R%,z are obtained from the following
problems: R} | = sup,. Apg(l — pg/2), st. pg < 1, u > Al — p§/2);
R}, = sup,, App(2 — pp)?/2, s.t. 1 < pp <2, u > A2 — p)*/2. Solving
these two problems gives

2.6 .
RO ) 2[(\1 5 i <é“/22’ S AJ2, A <2
= \/_—, e N =
B.1= | k2 —p w220 BB2T ) a— JIETR). A = 2.
infeasible, A >2u;

: 0 _ 0 0
Since Ry = max{Rp |, Ry ,}, we have

2op, A <3u/2;
Ry = 1 uv/200 = n/A). A € [31/2.2p); (B.2)

2 —=2u/N), A =2p.

Combining (B.1) and (B.2), we have Rg > Rg if A < 2u. Sincelim._,g Ra(c) = Rg
and lim._,g Rg(c) = Rg, it follows that if A < 2u, there exists § such that for ¢ < 8,
Rg(c) > Ra(c). O

Proof of Proposition 3 Let A — oo. Under a la carte pricing,

c

Ra =sup 2A(1 —vy) (UA -
e PEYNTEN)

) , St > A(l —vy).

In order for u > A(1 — v4) to hold, we must have vy — 1 as A — oo. The FOC
gives

! e
T2 [1 T Al- m))z} | B2

Hence, A(1 —va4) = 0 — /2&"_1. Since vg — 1, A(1 —va) > u — Jcu.

C
lim Ra = lim 2A(1 — - | =2u0 =/
Jm Rp = lim ( UA)|:UA M—A(l—vA)} ( c/un)

@ Springer



29  Page 36 of 45 Queueing Systems (2025) 109:29

Under bundle pricing, we have shown in the proof of Theorem 1 that Rg = Rp 2
since Rp2 > Rp,; for sufficiently large A. Rp > is obtained from Problem 4. We
consider a relaxation problem:

Problem B.2

Rpp=max Apg(2—2cW — pg)* /2,
PB

1

s.t. W= ,
pw—AQ2—2cW — pp)?/2

2—2cW—-pg >0, pg+2cW=>1.

The only difference between Problems 2 and B.2 is that Problem 2 requires pg +
c¢W > 1, whereas Problem B.2 only requires pg + 2cW > 1. Hence, Rg 2 > Rp .

Let1—y = (2—2cW—pg)?/2 € [0, 1/2]. Then, pg=2 (1 —J 52— m)

A 1—y c
Rpo= max 2A(0—-y)|1-— - , st > Al —y).
T yell/2.1] 2 nw—Al=y)

The unconstrained FOC gives m =1- 3}76«/1 —y.Forpu > A —y)to

hold, we must have y — }aSA — 00. Hence, 1—3}75«/1 —y — las A — oo.From
the FOC, lim s _ o0 m = 1. This implies imp 00 A(1 — y) = u — Jct.

Plugging this into Problem B.2 gives limp_, I%B,g = 2u(1 — /c/w)?. Further,
pB +cW =2<1—‘/%> — ATy ASA > 0o,y — L and pg + cW —

2—./c/u > 1. Hence, the relaxation Problem B.2 recovers the optimal solution to the
original Problem 2. Therefore, limp o0 Rp 2 = limp o 1%3,2 =2u(l — /).
Hence, limp oo A(A) = 0.

Also, Theorem 1 shows A(A) > 0 for sufficiently large (but finite) A, which
implies that A(A) cannot be monotone increasing in A. O

Proof of Proposition 4 Step 1: We consider sufficiently small A. Let A — 0. Thus,
W — ¢/ under either a la carte or bundle pricing. Under a la carte pricing, similar
to the proof of Theorem 1, the scaled revenue Ra/A is Ra/A = max,, 2(1 —

va)(vg — ¢/p). The first-order condition (FOC) gives vq = 1 (1 + ﬁ) . Plugging
it into the revenue function gives the scaled revenue Ra/A and price pa: Rao/A =

2
% (1 — ﬁ) , PA=VA—C/lL = % (1 — ﬁ) . The equilibrium utilization satisfies

ALy —1<1_£) (B.4)
Ap T2 ) '

Under bundle pricing, the scaled revenue Rg/A = max{Rp /A, Rp2/A}, where
Rp,1 and Rp 7 are obtained from the following two subproblems, respectively.
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Subproblem 1:
Rp1/A=max pp (1 — /2 — 2pee/p — cz/uz) , st pp+e/pn <L

The unconstrained FOC gives 1 — (¢/u)?> — —4(c/pw)pp — 3p123/2 = 0. Solv-
ing the FOC gives pp = %(—4c/u+ 6+ 10(c/u)2). Note that the other

root of the FOC is negative and thus omitted. One can verify pp above sat-
isfiles pp + ¢/u < 1 and thus is the optimizer to the constrained problem.
Plugging pp into the revenue function gives the scaled revenue is Rp /A =

z (‘/10(c/m2 16— 4(c/u)) (3 +(¢/10)? = (¢/ w100/ 0)? + 6) . The equilib-

rium utilization u g satisfies

A =B/ e/ pre/n = 5 [6 — e/ (\/10(c/m2 16— 9)} .

(B.5)

Subproblem 2:
Rpo/A =max pp(2—2¢/p— pB) /2, st p+c/pw> 1, pp+2c/p <2.
B

The unconstrained first derivative of the objective function with respect to pp is
(2——2c/u—pp)*/2 — —2pp(2——2¢/u—ps) = (2——2¢c/u— pp)
[2— —2¢/u — pp)> — —4pgl. The first term (2 — —2c/u — pp) is nonnega-
tive, so the sign of the derivative is the same as the sign of the second term
[2——2c/n— pB)2 — —4pg]. The second term is decreasing in pg. When pp =
1—c/u,thesecondtermis (2 — —2¢/u — (1 — c/,u))2 =4(1—c/pn) = (I—c/u)(1—

c/u—4) <0.
Therefore, the first derivative is negative for pg € [1 — ¢/u,2 — —2c¢/u]. The
revenue function is decreasing in pg € [1 — ¢/, 2 — —2¢/u]. Thus, the maximum

of the revenue function is attained at pg = 1 — ¢/u. Hence, Rp1/A > Rp2/A;
Rg/A = Rp 1/A.
We have shown that 2ps = 1—¢/p and that pg = (—4c/p, +./6+ 10(c/u)2>.

One can verify that 2pa > pp always holds for all ¢/ < 1.
Step 2: We consider sufficiently large A. The FOC for a la carte pricing (B.3) gives

cu

T 1—2(1 —vp), (B.6)

Letting A4 = A(l — vya), we rewrite (B.6) as cu/(n — A =1-— 2x4/A. The
optimal a la carte price is

c

PA=Vp — —————
u— A —v4)
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cp

T S ) B e Y L
A H— A 2 U —Aa
L e@ra—p)
S22 = A
where equality (a) follows from cu/(u — ) =1-— 2h4/A. Define Y4(X) =
1 c(2h—p) . .. . . . , e
5+ 26i=3)? which is 1ncrf:a.smg .1n A since Y (A) = G 0.
The FOC for bundle pricing gives
32
e 132 4 y (B.7)

S
(n— A —y))? 4

Note that as we argued in the proof of Proposition 3, when A is sufficiently large,
(B.7) gives the optimal solution to the original constrained bundle pricing problem.
Letting Ap = A(1 — y), we rewrite (B.7) as cu/(n — )\B)2 =1- #«/AB/A. The
optimal bundle price satisfies

P _ 1=y ¢ _q_ | __c @1_%[1_L]
2 2 u—Al-y) 2A p—ig 3 (1 —rp)?

c 1 cBrgp—p)

w—ig 3 3(u—irp)?’

where (b) follows from cp/(u — Ag)> =1 — 3}75«/)»3/A.

Define Yz (1) = % + gijﬂfz) which is increasing in A since Y (1) = ;Eﬁfi))‘;) > 0.
We next show Y4(A4) > Yp(Aa) > Yp(Ap) whichimplies 2pa > pp. One can show
X4 is increasing in A and has a limit © — /cpt as A — oo, and so Ag < u — /ciL.

Comparing Y4 (1 4) with Yp(Ap) gives

cp

1 cu _
6 (1L —na)?

(n— (= Jem)?

1
> _
)

=

1
Ya(ha) —Yp(ha) = 3
In Proposition 5, we show 14 > Ap for sufficiently large A. Since Y () is increasing
in A, it follows that Yg(A4) > Yp(Ap).

Finally, we consider the limit of ps and pg as A — oo. Recall that pp = vq —

c/(u—ra)and B =1 - JI5¥ — o6
A — oo,wehavelimp_,oo pA = 1 —+/c/p.Sincey — land A(1 —y) - u—./ci
as A — oo, we have lima . p/2 = 1 — /c/ 1. O

Since Ay > u— . Jcuandvy — 1 as

Proof of Proposition 5 Step 1: We consider sufficiently small A. From (B.4), the

equilibrium utilization u#4 under a la carte pricing satisfies X/A,; = % (1 - i) .
From (B.5), the equilibrium utilization up under bundle pricing satisfies X—ZL =

%[6— (c/u)2+ﬁ(x/lo(c/,u)z+6—9>]. Now, we shall show ug/(A/u) >
ua/(A/p). Let x £ c/u € (0,1). We show, for any x € (0,1),
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é [6 —x24x (v 10x24+6 — 9)] > %(l — x). We first show that for x € (0, 1),

V10x2 +6 > % This is equivalent to showing 10x> + 6 > w, which
is further equivalent to showing 40x> 4+ 24 > (5x + 3)2. Collecting terms gives
15(1 — x)? > 0, which holds for x € (0, 1). Therefore, v 10x2 + 6 > % We have
%[6—x2+x<«/M—9>] > 5[6—x2+x<¥—9)] = la— s+
x2). Next, we show (4 — 5x + x2)/6 > (1 — x)/2, or equivalently, 4 — —5x + x> >
3(1—x).Forx € (0,1), (4 ——5x+x>)—3(1—-x)=1——2x+x2=(x—-12> 0.
Hence, by continuity, up > u 4 for sufficiently small A.

Step 2: We consider sufficiently large A. In the FOC (B.6) and (B.7), the left-
hand sides of (B.6) and (B.7) are the same and decreasing in their corresponding
argument (v4 and y, respectively), and the right-hand sides of (B.6) and (B.7) are
increasing in their corresponding argument. As A gets sufficiently large, both v4 and
y will be sufficiently close to 1. Hence, v4 < y if and only if 1 — 2(1 — x) >

1- %j«/l — x for x close to 1. To this end, let f1(x) =1 ——2(1 —x) and fo(x) =
1 — 32 /T—x. First note that fi(1) = fo(1) = 1. Next, 400 = »  db) _

lim, _, |- dJZ)(CX) = 00 > 2. Hence, there exists x € (0, 1) such that fj(x) >

3
3V2y/1-x’
fa(x) for x € (x, 1). This further implies that for sufficiently large A, v4 < y. Since

usa = A(l —vyg)/nwandup = A(1 — y)/u, it follows that u 4 > u g for sufficiently
large A. O

Proof of Proposition 6 Step 1: We consider sufficiently small A. Define x = ¢/u €
(0, 1). Then,

1
1
CSa/A = 2/ (v —va)dv = ~(1 — x)%.
va 4

CSg/A = / / {[vi — x]* + [v2 = x]" — pp}TdF (v)dF (v2),

where vq4 = (1 +¢/u)/2 and pg = % (—4x + 6+ 10x2> by the proof of Proposi-
tion 4. Simple computation yields

1
CSp/A = o (34x3 —16v/2v/5x2 + 3x% + 81x% — 24+/2y/5x2 + 3 — 36x + 81) .

Thus,

1
CSp/A—CSp/A =12 (136x3 +243x2 + 18x + 243 — (96 + 64x2)v/10x2 + 6) ‘

Since

(136x3 + 243x% + 18x + 243)% — [(96 + 64x%)v/10x2 + 6]°
— 27(1 — x)3 (832x3 4 48x% + T41x + 139) -0,
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it follows that CSg/A > CSa/A as A — 0.

Step 2: We consider sufficiently large A. Let A4 and Ap be the optimal joining
rate for each service under a la carte and bundle pricing, respectively. Under a la
carte, the cutoff valuation for each service is v4 = 1 — A 4/A, and so the consumer
surplus is CSp = 2Af (v —va)dv = A2 “4/A. Under bundle pricing, the cutoff
valuation for the bundle is vg = 2 — 4/2Xp/A, and so the consumer surplus is
CSg = Afsz (v —vp)(2 — v)dv = 2(215/A)>/?, where (2 — v) is the PDF of
bundle valuation for v > 1. Now,

CSa 3 A

C_SB f )\3 72 / VA < 1 for sufficiently large A.
Since Ag > u— . Jew > 0and Ag > u — Jew > 0as A — oo, it follows that
CSA/CSg — 0as A — oo, or equivalently, limp_, o, CSg/CSa = o0. O

Proof of Proposition 7 From (B.1), the a la carte profit as a function of u is

1'[0()= %—Zku, A <2u;
2pl —p/A) = 2kp, A =2p.

For u > A /2,115 4 (u) is decreasing in p, which implies the optimal capacity should be
no greater than A/2 For u < A/2,the FOC withrespectto p gives2——4u/A—2k =
0. This givesu = (1—k)A/2 € (0, A/2) fork < 1.Plugging it into the profit function
gives l'[g = A(1 — k)?/2 > 0. Hence, for k < 1, the optimal 2 la carte capacity is
ua = (1 —k)A/2; for k > 1, the firm cannot generate a positive profit.

From (B.2), the bundling profit as a function of u is

2ON — 2k, A <3u/2:
MG () = { uy/20 = f/A) — 2k, A € [B/2,2u);
M2 =21/ N) =2k, A=2u.

For u > 2A/3, 1'[% (u) is decreasing in p, which implies the optimal capacity should
be no greater than 2A /3. We thus focus on € (0,2A/3) and discuss two cases
depending on the relative value of k and 1/4.

Casek < 1/4.Forp < A/2, 1% (w) = n(2— \/M) — 2k and the unconstrained
FOC gives u = 8(1 — k)zA/9 > A/2. Hence, I p(w) is increasing in u for u €
(0, A/2]. The optimal capacity is attained for u € [A/2 2A/3], where T19 p(n) =

JA) 2—=3u/A

u~/2(0 — /A) — 2ku. The first derivative gives d’L = f[ \/% — 2k =
[3m - u/A] //2 — 2k. By inspection, dT1%(w)/dp is decreasing in
@/ A. The maximum is obtained at © = A /2, at which point dnB(/,L)/d/L lu=A/2=
1/2 — 2k > 0 since k < 1/4. The minimum dl'[%(,u)/d,u, lu=2n/3= —2k < O.
Hence, the optimal capacity up solving the FOC must satisfy ug > A/2. Since
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ua = (1 — k)A/2, it follows that up > ua. Bundling is profitable in this case
because 1% (up) > MY (A/2) = A(1/2 — k) > 0.

Casek > 1/4.For un < A/2, H% (n) = (22— 21/ A)—2ku and the unconstrained
FOC gives u = 8(1 — k)>A/9 < A/2. Hence, the optimal capacity in this region is
8(1 — k)2 A /9. Later we show this capacity is also globally optimal. Since l'[% (8(1 —
k)?A/9) = 2(1 — k)/3, bundling generates positive profits if k < 1. Recall that the
optimal a la carte capacity is ua = (1 — k)A/2. Hence, up > ua if and only if
8(1 —k)2A/9 > (1 — k)A/2, which is equivalent to k < 7/16. Now, we show up =
8(1 — k)2 A /9 is globally optimal. It suffices to show the optimal capacity is achieved
forpu € (0, A/2]. For u € (A/2,2A/3], the first derivative dH% (m)/d e is decreasing
in i/ A. The maximum is obtained at © = A /2, at which point dl'[%(u)/du lu=nr/2=
1/2 — 2k < 0 since k > 1/4. Thus, "“};’” < Oforall u € (A/2,2A/3]; T (u) is
decreasing in i for u € (A /2, 2A/3]. Therefore, the optimal up is in region (0, A /2].
O

Appendix C: Relative revenue difference in product bundling

We consider the classical setting of product bundling (without congestion) in which
the marginal cost of production is «. Customer valuation is uniformly distributed over
[0, 1].

A la carte pricing Ra = max,, 2(1 — pa)(pa — k). The FOC gives pa =
7+, Ry=3(0 -0

Bundle pricing

Subproblem 1: Rp 1 = max,, (1 — p123/2)(pB —2k), st. pg<1.

Subproblem 2: Rp > = max,, %(2 — pB)z(pB —2k), st pg>1.

The unconstrained FOC of subproblem 1 gives 1 + 2k pg — 3 p]23 /2 = 0. When
k > 1/4, the revenue function is always increasing in pg. Otherwise, pg = %(2/( +

Vo). and Rp1 = & (VAT 6 —4c) (3- -2 —kv/AT+6), x <

1/4. The unconstrained FOC of subproblem 2 gives pg = 2+34". For k < 1/4,

Rp 7 is no better than Rp ;. Otherwise, Rp 2 = ;—?(1 — K)3, k > 1/4. In sum,

R %(«/4/{24—6—4/() (3—2/(2—16\/41(2—‘1-6), Kk < 1/4;
B =
é—g(l_")37 Kk > 1/4.
i+ Ve + 4K, K < 1/4;
PB = 24:;4K K > 1/4_

Figure 11 plots the relative revenue difference (Ra — Rp)/Rp x 100% as a function
of the marginal cost and shows that it is monotone increasing.
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Fig. 11 The relative revenue
o/ L
difference in classical product 120%
bundling as a function of the
marginal cost 100% -
80% -
Ra=Re oo, -
Rg
40% -
20% -
OD
i
0 0.2 0.4 0.6

Rp 0.2

(a) Pay-per-use (b) Subscription pricing (c) Relative revenue difference

Fig. 12 Revenue comparison of subscription pricing and pay-per-use. Customer valuation uniformly dis-
tributed over [0, 1], u =1

Appendix D: Relative revenue difference between subscription pricing
and pay-per-use

This section compares subscription pricing with the pay-per-use scheme, following
Cachon and Feldman [11]. We first recap the revenue functions of each pricing scheme.
According to Cachon and Feldman [11], the maximum revenue of pay-per-use is

R, £ max AF(v)[v — cW(AF(v))].
v
The maximum revenue of subscription pricing is

R; £ max AF(US)(E[V|V > vs] — vs),
Vs

where vy = cW(AF (vy))).
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Figure 12 plots the maximum revenue of each pricing scheme and the relative
revenue difference as a function of potential arrival rate A (under a uniform valuation
distribution). We make the following three observations.

1. We observe from Fig. 12a that the revenue of pay-per-use is increasing in A, as
expected.

2. Weobserve from Fig. 12b that the revenue of subscription pricing is non-monotone
in A with an inverse U -shaped relationship. In fact, one can analytically show that
the revenue of subscription pricing tends to zero as A goes to infinity. This non-
monotone relationship is driven by the inability of subscription pricing to control
congestion (an effect highlighted by [11]).

3. We observe from Fig. 12c that the relative revenue difference between pay-per-
use and subscription pricing is increasing in A (i.e., the percentage revenue loss
from suboptimally choosing subscription pricing grows with A). Note that this
observation contrasts the comparison between bundle pricing and a la crate pricing,
where the relative revenue difference is non-monotone in A, and bundle pricing
becomes largely identical to a la carte pricing in revenue performance when A is
large.
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